Tranquility® Ducted Vertical Stack (TSL) Series

Submittal Data

Models TSL09-36, 60Hz - HFC-410A

TSL Vertical Stack Series

Introduction	5
Features, Options and Accessories	6
iGate® Communicating Controls	7
Constant Volume (CV) – ECM	8
vFlow® Modulating Water Valve	9
Selection Procedure	10
TSL Series Nomenclature – D Cabinet	12
TSL Hybrid Series Nomenclature – E Cabinet	14
TSL Series Nomenclature – Chassis	17
TSL Series Accessory Nomenclature	19
Performance Data – AHRI/ASHRAE/ISO 13256-1	22
Performance Data – Selection Notes	23
Performance Data – TSL09 with PSC Motor	24
Performance Data – TSL12 with PSC Motor	25
Performance Data – TSL15 with PSC Motor	26
Performance Data – TSL18 with PSC Motor	27
Performance Data – TSL24 with PSC Motor	28
Performance Data – TSL30 with PSC Motor	29
Performance Data – TSL36 with PSC Motor	30
Performance Data – TSL09 with ECM Motor	31
Performance Data – TSL12 with ECM Motor	32
Performance Data – TSL15 with ECM Motor	33
Performance Data – TSL18 with ECM Motor	34
Performance Data – TSL24 with ECM Motor	35
Performance Data – TSL30 with ECM Motor	36
Performance Data – TSL36 with ECM Motor	37
Performance Data – TSL09 Hybrid	38
Performance Data – TSL12 Hybrid	39
Performance Data – TSL15 Hybrid	40
Performance Data – TSL18 Hybrid	41
Performance Data – TSL24 Hybrid	42
Performance Data – TSL30 Hybrid	43
Performance Data – TSL36 Hybrid	44
Performance Data – Correction Tables	45
Antifreeze Correction Table	46

Document page number is shown next to part number (e.g. LC1007 - 3 = page 3). Since not all pages are typically used in the submittals process, the page number in the lower right corner can still be used (page ____of_

TSL Vertical Stack Series

Hybrid Performance Data – Correction Tables	48
Blower Performance Data – TSL09 (PSC/ ECM-CT/ECM-CV)	49
Blower Performance Data – TSL12 (PSC/ ECM-CT/ECM-CV)	50
Blower Performance Data - TSI 15 (PSC/ FCM-CT/FCM-CV/)	51

51 52 Blower Performance Data – TSL18 (PSC/ ECM-CT/ECM-CV)

53 Blower Performance Data – TSL24 (PSC/ ECM-CT/ECM-CV)

Blower Performance Data – TSL30 (PSC/ ECM-CT/ECM-CV) 54

55 Blower Performance Data – TSL36 (PSC/ ECM-CT/ECM-CV)

56 Performance Data – Ducted ECM-CV

Physical Data 57 58 Hybrid Physical Data

59 Electrical Data – PSC Motor (208/230V) and (265V)

Electrical Data - ECM-CV Motor (208/230V) and (265V) 60

Electrical Data – ECM-CT Motor (208/230V) and (265V) 61

> Typical Unit - Exploded View 62

> > D Cabinet 63

Leader/Follower Cabinets 64

> D Cabinet Dimensions 65

D Cabinet Slot Dimensions and Riser Arrangements 66

> 67 E Cabinet Dimensions

E Cabinet Slot Dimensions and Riser Arrangements 68

> Typical Cabinet with "G" Panel Installation 69

70 Typical Recessed Cabinet w/"G" Panel and Frame Installation

Hinged "G" Style Return Air Panel – AVHSG Series 71

"L" Style (Flush Mounting) Return Air Panel – AVHRL Series 72

> 73 Hose Kits and Stands

Supply Air Openings and Grilles 74

> 76 **Thermostats**

TSL Cabinet Options 78

> 79 Riser Definitions

Riser GPM Definitions and Sizing 80

> Riser Diameter Sizing 81

82 Swage Riser Length Definitions and Sizing

83 Swage Riser Extension Definitions and Calculations Slab Hole Chart - 3 Pipe 84

> Shipping 85

Engineering Specifications 88

Table of Contents

TSL Vertical Stack Series

Pre-Engineered Factory Design Specials 101
Performance Sheet 102
Revision History 103

Introduction

TRANQUILITY® VERTICAL STACK (TSL)SERIES WITH EARTHPURE® REFRIGERANT

The Tranquility® Vertical Stack (TSL) Series offers an innovative, labor-saving solution for spaces where individual, quiet control of the heating and cooling systems is important. Vertical stack products are designed for multi-story buildings where floor to floor footprints are similar. They utilize vertically mounted water lines known as risers installed in a wall or mechanical shaft to minimize space, material, and connections. The TSL system consists of two major components – a cabinet located behind a finished wall and a slide in and out refrigeration chassis. This allows for the riser and cabinet pieces of the system to be installed early in the construction phase so they can be framed around without exposing the refrigeration chassis to the harsh construction environment. At the finishing stages of construction when the system is ready to be commissioned, the slide in chassis is quickly and easily installed. The TSL system offers a proven solution that is designed and manufactured in America, exceeds ASHRAE 90.1 efficiencies, contractor/ technician friendly, has a compact foot print minimizing its impact on salable space, maximizes comfort levels of occupants, and has been proven as a preferred system in thousands of multi-story building applications across North America.

The TSL series is available in seven sizes ranging from 3/4 ton (2.6 kW) through 3 tons (10.6 kW). The cabinet has been designed with flexibility offering five different supply air locations and four different riser connection locations that can be factory or field configured. The chassis is designed for quick installation with two water hose connections and three or four electrical quick connectors. Both pieces of the system offer options to increase a buildings energy efficiency. Integrated water control options save system watts by preventing over pumping both when the unit is in operation and when its not. ECM fan motors maximize the systems airflow movement efficiency. Industry exclusive advanced communicating controls offer reduced startup and commissioning time by providing an easy to read gateway into the systems operating conditions.

High-end condos/apartments/hotels demand the highest level of occupant comfort. Not only is it important for the system to provide heating, cooling, and dehumidification it must do so at quiet operating levels. ClimateMaster's double isolation compressor mounting system makes the TSL Series the quietest vertical stack unit on the market. Compressors are mounted on specially engineered sound-tested isolation grommets to a heavy gauge base pan, which is then isolated

from the cabinet base with a second layer of grommets under the condensate pan to provide superior sound attenuation by design. ClimateMaster offers an Ultra-Quiet sound attenuation package and cabinet isolation pad to meet the demand of the most sound sensitive applications.

iGate® technology provides technicians an interface into the operation of the system in real time without the need for hard tooling. On board advanced controls communicate the key operating temperatures allowing technicians to start-up, commission, and service the equipment through a hand-held service tool which is easily connected without removing any unit hardware. Not only does iGate monitor current performance, it also offers the functionality to make system adjustments and captures operating conditions in the event of a system safety shut down. All this information is displayed in an easy to read format improving the usability of the experience.

vFlow® variable water flow technology takes water flow control and system operating range to the next level. The functionality of an on/off water valve and water flow regulator are combined into one modulating water valve component. With a modulating valve water flow is controlled to maintain a set temperature difference between entering and leaving water while in normal operation. When in extreme entering water conditions the vflow system switches its operation to maintain a leaving water temperature. With the functionality to control water flow to a leaving water temperature, the TSL's operational range is expanded beyond other water source heat pumps with an ability to function in heating or cooling modes across the entire entering water range of 30-120°F. While not in operation the valve remains closed preventing excessive water flow. vFlow increases system water flow efficiency by only allowing the right amount of water flow needed when it needs. Advanced iGate controls paired with the vFlow system provide functionality and efficiency unmatched in the marketplace.

The TSL Vertical Stack Water-Source Heat Pump Series provides energy efficiency with superior sound attenuation by design while offering options flexibility, field convertibility, and unmatched industry leading technology.

New September 2020

- Added Pre-Engineered Factory Design Specials Section
- 3-way water valves
- New thermostat options
- Document update
- DDC chassis controls harness options

Features, Options and Accessories

FEATURES

- Sizes 09 (3/4 ton, 2.6 kW) through 36 (3 ton, 10.6 kW)
- Environmentally-friendly EarthPure® (HFC-410A) zero ozone depletion refrigerant
- High efficiency rotary and scroll compressors
- Exceeds ASHRAE 90.1 efficiencies
- Removable chassis allows staged installation and ease of maintenance
- Coaxial heat exchanger
- Galvanized steel cabinet
- Chassis rests on rubber grommeted isolated condensate pan for vibration reduction
- Double isolation of compressor for quiet operation
- TXV metering device
- Cabinet construction for unit or remote-mounted controls
- PSC fans capable of two speeds
- Microprocessor controls with 8 standard safeties
- Unit Performance Sentinel performance monitoring system
- Integrated drain pan with condensate overflow sensor
- Field convertible supply air on all sides and the top
- Field convertible riser supply, return, and condensate locations on the left, right, or back sides

OPTIONS

- iGate® Advanced Communicating Controls
 - Provides real-time unit operating conditions
 - Reduces start-up and commissioning times by removing the need for hard tooling to take temperature measurements
 - Captures operating conditions in the event of a safety shutdown
 - Provides direct control over intelligent constant volume (CV) ECM fan motor and vFlow modulating water valve
 - Service tool is quickly connected without the need to remove any unit hardware
- vFlow[®] modulating water flow
 - Modulates water flow to maintain a water temperature differential
 - Changes operation to modulate to a leaving water temperature during extreme entering water temperatures
 - Provides ultimate variable water flow control
 - Functionally operates as both a water flow regulator and water close off valve
- 2" Filter Rail to support higher indoor air quality filters
- BACnet (MSTP), Modbus and Johnson N2 compatibility options for DDC controls
- Factory configured supply air openings with or without dust protection

- Full port shut-off valves with memory stop, for supply and return risers.
- Unit integrated power disconnect
- Field quick connect thermostat whips in 15', 25', and 35' lengths
- Factory mounted high density rubber isolation pad
- Easy to clean rust prohibitive stainless steel drain pans
- High efficient ECM fan motors
 - Intelligent Constant Volume (CV) ECM motors for ultimate airflow control
 - Entry level Constant Torque ECM motors that provide efficiency at a value
- Extended range insulation for geothermal applications
- Auto flow regulators that limit water flow to the unit preventing system over pumping
- Two-way motorized water valves that prevent water flow through the unit when it is not in operation increasing system pumping efficiency (fail opened of fail closed options)
- Three-way motorized water valves that allow continues water flow through the water loop, reducing pressure drop when the unit is not in operation (usually applied on the top floor of a system)
- Internally mounted water pump for single pipe systems
- Corrosive resistant cupro-nickel water heat exchanger
- RIB relay (sizes 09-18) box for quiet contactor closer
- UltraQuiet sound attenuation package
- Tin-lated air coils for added protection from formicary corrosion

ACCESSORIES

- Copper risers
 - Swedged ends ready for quick drop in connection when brazing is used
 - End treatment ready for crimped (torch-less) style connections
- Unit stands that prevent clearance issues with tall baseboards
- Single, Double, and Double deflection with opposed dampers supply air grilles
- Fresh air frame kit for connection to outdoor air ducting
- Flush Mounted Return Air Panel (L Style) with fixed frame and removable panel for easy chassis access/ removal
- Attractive return air panel with hinged access door (G style)
 - Key Lock Option
- Stainless steel braided hose kits for connection from piping risers to the chassis
- Selection of thermostats including programmable, WiFi, and color touch screen
- Filters 1" (Merv 8 or 11) or 2" (Merv 8 or 13)

iGate® Communicating Controls

iGate® - Information gateway to monitor, control, and diagnose your system

Tranquility® Vertical Stack (TSL) Series offers the industry's first 2-way communicating gateway that allows user to interact with the system in an easy to read and understandable format. The technology is designed to improve reliability and efficiency by precisely controlling variable speed components.

Configure & Monitor – Technicians have the ability to configure airflow, water temperature differential, unit options, and demand reduction. Users can view the systems status in real time through the use of sensor readings.

Precise Control – The new DXM2 board enables intelligent, 2-way communication between the DXM2 board and smart components like the communicating thermostat/ service tool, CV ECM fan motor, and vFlow® modulating water valve. The DXM2 board uses information received from the smart components and sensors to precisely control unit operation as well as to deliver higher efficiency, quieter operation, reliability and increased comfort.

Diagnostics – iGate takes diagnosing water source heat pumps to a next level of simplicity, by providing a dashboard of system and fault information, in plain English, on the iGate thermostat or service tool. iGate Service Warning feature displays fault description, possible causes and current system status (temperature readings, fan RPM and water flow status) which may be reported to service personnel.

In iGate Service Mode, the service personnel can access fault description, possible causes and most importantly, the conditions (temp, flow, i/o conditions, configuration) at the time of the fault. Manual Operation mode allows the service personnel to manually command operation for any of the thermostat outputs, blower speed, as well as pump speed or valve position from the thermostat, to help troubleshoot specific components.

With iGate communicating controls, technicians have a gateway to system information never before available and exclusive to ClimateMaster vertical stack products.

AIRFLOW SELECTION	CEM
HEAT STAGE 1	CFM 600
HEAT STAGE 2 AUXILIARY HEAT EMERGENCY HEAT COOL STAGE 1 COOL STAGE 2 COOL DEHUMID 1 COOL DEHUMID 2 CONTINUOUS FAN HEAT OFF DELAY COOL OFF DELAY	750 850 850 525 700 425 550 350 60 30
◆ PREVIOUS	NEXT▶

POSSIBLE FAULT CAUSES LOW WATER COIL TEMP

LOW WATER TEMP-HTG
LOW WATER FLOW-HTG
LOW REFRIG CHARGE-HTG
INCORRECT LT1 SETTING
BAD LT1 THERMISTOR

PREVIOUS

	FAULT TEMPERATURE CONDITIONS
	LT1 LOW WATER TEMP
	HEAT 1 11:11 AM 11/14
	LT1 TEMP 28.1 LT2 TEMP 97.3 HOT WATER EWT 121.5 COMP DISCHARGE 157.7 LEAVING AIR 92.7 LEAVING WATER 34.9 ENTERING WATER 42.1 CONTROL VOLTAGE 26.4
ı	◆ PREVIOUS

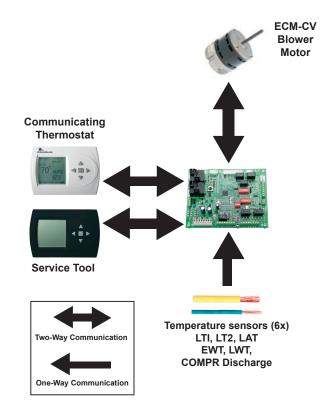
Constant Volume (CV) - ECM

The Intelligent Constant Volume (CV) ECM blower motor provides unmatched functionality that saves installing and service technicians time while also

providing increased comfort levels to occupants.

CV ECM's are programed to maintain a constant CFM across a wide range of external static pressures (ESP). This functionality differs from traditional PSC or even Constant Torque (CT) ECM's. With tradition PSC and CT ECM fan motors as ESP is increased, CFM is reduced. To increase or decrease the speed of the fan motor requires a fan motor switch or a technician to wire into a different motor tap. CT ECM's provide increased efficiency over PSC motors but with no additional functionality. With a CV ECM as changes in ESP occur the fan motor will adjust its speed to deliver the desired CFM (within its operating range). This ensures the system is delivering the airflow and capacity it was

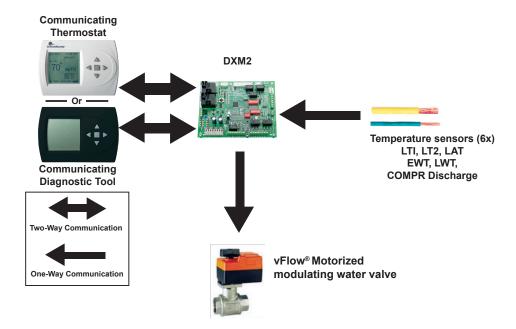
A major benefit of the CV ECM over other fan motor types its ability to adjust airflow through the iGate communication service tool or thermostat. Airflow levels can be adjusted in increments of 25 CFM from the units minimum and maximum CFM range (see ECM-CV configuration table for details). This functionality allows technicians to dial in airflow during start-up and commissioning via an easy to use service tool. The service tool is connected to the unit without the removal of any hardware making it easy to get to by simply opening the return air panel. During operation occupants may have a desire for airflow adjustments. Reducing CFM can reduce airflow sound levels and increase cooling dehumidification (latent capacity). Technicians can easily make these adjustments without the need to remove unit hardware or make wiring changes reducing service time with minimal disruption to the occupants.


The fan motor operating modes include:

- First Stage Cooling (Y1 & O)
- Second Stage Cooling (Y1, Y2, & O)
- First Stage Heating (Y1)

designed for.

- Second Stage Heating (Y1 & Y2)
- Fan (G with no Y1, Y2, or W)


The CV ECM motor includes "soft start" and "ramp down" features. The soft start feature gently increases the motors rpm at blower start up resulting quieter blower start cycles. Likewise, the ramp down feature allows the blower to slowly decrease rpm to a full stop resulting in a quieter end to each blower cycle. The ramp down feature (also known as the heating or cooling "Off Delay") also has the functionality to be field selected by the technician in the allowable range of 0 to 255 seconds.

AIRFLOW SELECTION	CFM
HEAT STAGE 1 HEAT STAGE 2 AUXILIARY HEAT EMERGENCY HEAT COOL STAGE 1 COOL STAGE 2 COOL DEHUMID 1 COOL DEHUMID 2 CONTINUOUS FAN	600 750 850 850 525 700 425 550 350
HEAT OFF DELAY COOL OFF DELAY PREVIOUS	60 30 NEXT▶

Airflow Configuration Screen on Communicating Thermostat or Service Tool

vFlow® Modulating Water Valve

vFlow® Internal Variable Water Flow

Industry-first, Built-in vFlow® provides an ultra-high-efficient internal water flow system. It saves installers time and labor by avoiding installing bulky valves or flow regulators in the field. Multi-unit installations are also much simpler with vFlow systems, as the units automatically adjust water flow across the system.

vFlow is enabled by iGate®, which facilitates intelligent communication between the thermostat, DXM2 control, sensors and modulating valve to make true variable water flow a reality.

In applications using the vFlow water flow control, when the motorized modulating valve slows down the external pump, consumes fewer watts, thus saving more energy.

vFlow® delivers four main benefits:

- 1. One component replaces 2 way motorized valve and auto-flow regulator
- 2. Superior reliability by varying the water flow to deliver more stable operation
- 3. Higher cost savings by varying water flow (and pump watt consumption) to match the unit's mode of operation
- 4. Allows unit to safely operate in cooling mode or heating mode from 20°F to 120°F

Modulating Water Valve Operation:

When the unit is in cooling or heating, the DXM2 controller monitors the entering and leaving water temperature. Based on the desired water temperature differential (delta T), the DXM2 sends a voltage signal to the valve which correlates to a percentage open in order to achieve the water flow needed. As conditions change the voltage signal will readjust the valve for the needed water flow.

The modulating water valve is factory set for a water delta T of 10F for cooling operation and 7F for heating operation. This default setting is estimated to be approximately 3 GPM of water flow per ton of load capacity. Installers can change the water flow by adjusting the delta T upward for lower flow or downward for higher flow by using the communicating thermostat or service tool. Please see unit IOM for full instructions.

At low cooling EWT's and high heating EWT's the DXM2 software overrides the delta T settings and adjusts the valve to operate to a LWT of no less than 60F for cooling and no greater than 70F for heating.

Units with the modulating water valve will operate at EWT's from 30°F to 120°F in BOTH cooling and heating. When there is no demand for cooling or heating, the valve will be fully closed or can be field configured to remain slightly open allowing some water to pass through.

vFlow water flow controls are unmatched in the market and exclusive to ClimateMaster vertical stack products.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climateMaster.com. © ClimateMaster, Inc. All rights reserved 2014.

LC1007 - 9 Page _____ of ___

Selection Procedure

Reference Calculations

Heating LWT = EWT - $\frac{HE}{GPM \times Constant}$ LAT = EAT + $\frac{HC}{CFM \times 1.08}$

Cooling

LWT = EWT +
$$\frac{HR}{GPM \times Constant}$$

LC = TC - SC

LAT (DB) = EAT (DB) - $\frac{SC}{CFM \times 1.08}$

S/T = $\frac{SC}{TC}$

Constant = 500 for water, 485 for antifreeze.

Legend and Glossary of Abbreviations

BTUH = BTU (British Thermal Unit) per hour GPM = water flow in U.S. gallons/minute MBTUH = 1,000 BTU per hour WPD = waterside pressure drop (psi & ft. of hd.) TC = total cooling capacity, BTUH HE = total heat of extraction, BTUH SC = sensible cooling capacity, BTUH HR = total heat of rejection, BTUH S/T = sensible to total cooling ratio KW = total power unit input, kilowatts EER = energy efficient ratio = BTUH output/Watt input LC = latent cooling capacity, BTUH HC = air heating capacity, BTUH COP = coefficient of performance = BTUH output/BTUH input CFM = airflow, cubic feet/minute MPT = male pipe thread ESP = external static pressure (inches w.g.) FPT = female pipe thread EAT = entering air temperature HWC = hot water generator (desuperheater) capacity, Mbtuh LAT = leaving air temperature, °F ECM-CV = electronic commutated constant volume fan motor DB = dry bulb temperature (°F) ECM-CT = electronic commutated constant torque fan motor WB = wet bulb temperature (°F) MWV = motorized water valve EWT = entering water temperature WSE = waterside economizer LWT = leaving water temperature, °F VFD = variable frequency drive TD or delta T = temperature differential

Conversion Table - to convert inch-pound (English) to S-I (Metric)

Air Flow	Water Flow	Est Static Pressure	Water Pressure Drop		
Airflow (L/s) = CFM x 0.472	Water Flow (L/s) = gpm x 0.0631	ESP (Pa) = ESP (in of wg) x 249	PD (kPa) = PD (ft of hd) x 2.99		

Selection Procedure

- **Step 1** Determine the actual heating and cooling loads at the desired dry bulb and wet bulb conditions.
- Step 2 Obtain the following design parameters: Entering water temperature, water flow rate in GPM, air flow in CFM, water flow pressure drop and design wet and dry bulb temperatures. Air flow CFM should be between 300 and 500 CFM per ton. Unit water pressure drop should be kept as close as possible to each other to make water balancing easier. Go to the appropriate tables and find the proper indicated water flow and water temperature.
- **Step 3** Select a unit based on total and sensible cooling conditions. Select a unit which is closest to, but no larger than, the actual cooling load.
- **Step 4** Enter tables at the design water flow and water temperature. Read the total and sensible cooling capacities (Note: interpolation is permissible, extrapolation is not).
- Step 5 Read the heating capacity. If it exceeds the design criteria it is acceptable. It is quite normal for Water-Source Heat Pumps to be selected on cooling capacity only since the heating output is usually greater than the cooling capacity.
- **Step 6** Determine the correction factors associated with the variable factors of dry bulb, wet bulb, and air flow.

Corrected Total Cooling = tabulated total cooling x wet bulb correction x air flow correction.

Corrected Sensible Cooling = tabulated sensible cooling x wet/dry bulb correction, and air flow correction.

- Step 7 Compare the corrected capacities to the load requirements. Normally if the capacities are within 10% of the loads, the equipment is acceptable. It is better to under size than oversize, as undersizing improves humidity control, reduces sound levels and extends the life of the equipment.
- Step 8 When completed, calculate water temperature rise and assess the selection. If the units selected are not within 10% of the load calculations, then review what effect changing the GPM, water temperature and/or air flow and air temperature would have on the corrected capacities. If the desired capacity cannot be achieved, select the next larger or smaller unit and repeat the procedure. Remember, when in doubt, under size slightly for best performance.

Example Equipment Selection For Cooling Step 1 Load Determination:

Assume we have determined that the appropriate cooling load at the desired dry bulb 80°F and wet bulb 65°F conditions is as follows

Total Cooling	17,000 BTUH
Sensible Cooling	12,000 BTUH
Entering Air Temp	80°F Dry Bulb / 65°F Wet Bulb

Step 2 Design Conditions:

Similarly, we have also obtained the following design parameters:

Entering Water Temp	90°F
Water Flow (Based upon 10°	F rise in temp.)5.1 GPM
Air Flow at ESP Unit	630 CFM (90% of rated)

Steps 3, 4 & 5 HP Selection:

After making our preliminary selection (TSL18 with PSC motor), we enter the tables at design water flow and water temperature and read Total Cooling, Sens. Cooling and Heat of Rej. capacities:

Total Cooling	18,350 BTUH
Sensible Cooling	13,210 BTUH
Heat of Rejection	22,470 BTUH

Steps 6 & 7 Entering Air and Airflow Corrections:

Next, we determine our correction factors.

Table Ent Air Air Flow Corrected

Corrected Total Cooling = $18,350 \times 0.975 \times 0.971 = 17,372$ Corrected Sens Cooling = $13,210 \times 0.999 \times 0.932 = 12,299$ Corrected Heat of Reject = $22,470 \times 0.982 \times 0.979 = 21,602$

Step 8 Water Temperature Rise Calculation & Assessment:

Actual Temperature F	Rise	.8.	8.	0	F
----------------------	------	-----	----	---	---

When we compare the Corrected Total Cooling and Corrected Sensible Cooling figures with our load requirements stated in Step 1, we discover that our selection is within +/- 10% of our sensible load requirement. Furthermore, we see that our Corrected Total Cooling figure is slightly undersized as recommended, when compared to the actual indicated load.

TSL Series Nomenclature – D Cabinet

Section	Desition	Digit	Description
Section		D	Description Ducted Cabinet Series
Series	1		
Size	2	1	09 - 0.75 ton
		2	12 - 1 ton
		3	15 - 1.25 ton
		4	18 - 1.5 ton
		5	24 - 2 ton
		6	30 - 2.5 ton
N-14	0	7	36 - 3 ton
Voltage	3	G	208-230/60/1
0.0		E	265/60/1
Options	4	A	Premium Seal
		В	Stainless Steal Drain Pan
		С	Premium Seal & Stainless Steal Drain Pan
		0	None
		1	Premium Seal & 2" Filter
		2	Stainless Steal Drain Pan & 2" Filter
		3	Premium Seal, Stainless Steal Drain Pan, & 2" Filter
		4	2" Filter
Harness Controls	5	Α	PSC fan motor, ADA mounted
		В	CV ECM fan motor, ADA mounted
		С	PSC fan motor, MPC DDC controls
		D	CV ECM fan motor, MPC DDC controls
		N	PSC fan motor, Remote mounted thermostat
		R	CV ECM fan motor, Remote mounted thermostat
		1	CT ECM fan motor, ADA mounted
		2	CT ECM fan motor, MPC DDC controls
		4	CT ECM fan motor, Remote mounted thermostat
Power Termination	6	Α	Disconnect switch
		В	Breaker
		С	Breaker, Internal circulating pump
		D	Disconnect switch, Internal circulating pump
		Ε	Internal circulating pump
		0	None
Cabinet Height	7	Е	65"
		F	65" with isolation pad
Riser Style	8	0	Follower/None
		1	Standard
		2	Leader

Table Continue on Next Page

TSL Series Nomenclature – D Cabinet

Table Continue from Previous Page

Section	Position	Digit	Descriptio	n				
Riser Location	9	0	None					
		1	Shipped Sepa	arately				
		2	Left Back	aratory				
		3	Right Back					
		4	Left Side					
		5	Right Side					
		6	Chassis shipp	oed in cabinet, risers sh	ipped separately			
		7	Chassis ship	ped in cabinet, no risers	, no ball valve as	semblies		
Riser Ball Valve Options	10	5	Standard (MN	NPT) Ball Valves				
		N	None	,				
Back/Front/Top Supply Air Locations	11	E	Тор					
Side Supply Air Locations	12	0	None					
	13	0	Option	Thermostat Whip	SA Opening	SA Dust Cover	RA Dust Cover	
Misc. Cabinet Options	13		A	No Tstat Whip	3A Opening	SA Dust Cover	NA Dust Cover	
			В	15' Tstat Whip	Factory	Yes	Yes	
			С	25' Tstat Whip	Configured			Yes
			D	35' Tstat Whip	_			
			J	No Tstat Whip				
			K	15' Tstat Whip	Factory		Mana	
			L	25' Tstat Whip	Configured	Yes	None	
			M	35' Tstat Whip				
			N	No Tstat Whip				
			Р	15' Tstat Whip	Factory	None	V	
			Q	25' Tstat Whip	Configured	None	Yes	
			R	35' Tstat Whip				
			4	No Tstat Whip	Factory None			
			5	15' Tstat Whip		None	None	
			6	25' Tstat Whip	Configured		None	
			7	35' Tstat Whip				
Туре	14	0	Standard					

D Ducted Cabinet Series

Revision

TSL Hybrid Series Nomenclature – E Cabinet

Digit **Section Position Value Description Series Hybrid Cabinet Series** Ε Size 2 09 - 0.75 ton 1 12 - 1 ton 2 3 15 - 1.25 ton 18 - 1.5 ton 24 - 2 ton 6 30 - 2.5 ton 36 - 3 ton 3 **Voltage** G 208-230/60/1 Ε 265/60/1 **Options** Α Premium Seal В Stainless Steal Drain Pan С Premium Seal & Stainless Steal Drain Pan 0 None Premium Seal & 2" Filter Stainless Steal Drain Pan & 2" Filter 2 3 Premium Seal, Stainless Steal Drain Pan, & 2" Filter 4 2" Filter **Harness Controls** CV ECM fan motor, ADA mounted В D CV ECM fan motor, MPC DDC controls R CV ECM fan motor, Remote mounted thermostat S CV ECM fan motor, Cabinet mounted thermostat CT ECM fan motor, ADA mounted 1 2 CT ECM fan motor, MPC DDC controls 4 CT ECM fan motor, Remote mounted thermostat 5 CT ECM fan motor. Cabinet mounted thermostat **Power Termination** 6 Α Disconnect switch В Breaker С Breaker, Internal circulating pump D Disconnect switch, Internal circulating pump Ε Internal circulating pump 0 None **Cabinet Height** Α 88" В С 88" with isolation pad D 80" with isolation pad Ε 65" F 65" with isolation pad **Riser Style** 0 Follower/None Standard Leader

Table Continue on Next Page

TSL Hybrid Series Nomenclature – E Cabinet

Table Continue from Previous Page

-		Digit	
Section	Position		
Riser Location	9	0	None
		1	Shipped Separately
		2	Left Back
		3	Right Back
		4	Left Side
		5	Right Side
		6	Chassis shipped in cabinet, risers shipped separately
		7	Chassis shipped in cabinet, no risers, no ball valve assemblies
Riser Ball Valve Options	10	5	Standard (MNPT) Ball Valves
		N	None
Back/Front/Top Supply Air Locations	11	0	None
		Α	Back Small
		В	Back Large
		С	Front Small
		D	Front Large
		Ε	Тор
		F	Back Small & Top
		G	Back Large & Top
		Н	Front Small & Top
		J	Front Large & Top
		K	Back Small & Front Small
		L	Back Large & Front Large
		M	Back Small & Front Large
		N	Back Large & Front Small
		Р	Back Small, Front Small, & Top
		Q	Back Large, Front Large, & Top
		R	Back Small, Front Large, & Top
		S	Back Large, Front Small, & Top
Side Supply Air Locations	12	0	None
		Α	Right Small
		В	Right Large
		С	Left Small
		D	Left Large
		Ε	Right Small & Left Small
		F	Right Large & Left Large
		G	Right Small & Left Large
		Н	Right Large & Left Small

Table Continue on Next Page

TSL Hybrid Series Nomenclature – E Cabinet

Table Continue from Previous Page

Digit

A No Tstat Whip B 15' Tstat Whip C 25' Tstat Whip C 35' Tstat Whip D 35' Tstat Whip E No Tstat Whip F 15' Tstat Whip F 15' Tstat Whip G 25' Tstat Whip J No Tstat Whip K 15' Tstat Whip K 15' Tstat Whip L 25' Tstat Whip N No Tstat Whip N No Tstat Whip P 15' Tstat Whip P 15' Tstat Whip Factory Configured None Y Configured Yes No No No Tstat Whip P 15' Tstat Whip Factory Configured None Y Configured None No Tstat Whip Configured None No Tstat Whip	Section	Position Value		on						
A No Tstat Whip B 15' Tstat Whip C 25' Tstat Whip E No Tstat Whip Field C C C Tstat Whip E No Tstat Whip Field C C C C C C C C C	Misc. Cabinet Options	13	Option	Thermostat Whip	SA Opening	SA Dust Cover	RA Dust Cover			
C 25 Tstat Whip D 35 Tstat Whip E No Tstat Whip F 15 Tstat Whip G 25 Tstat Whip J No Tstat Whip K 15 Tstat Whip K 15 Tstat Whip N 15 Tstat Whip P 15 Tstat Whip N No Tstat Whip P 15 Tstat Whip P 15 Tstat Whip P 15 Tstat Whip R 35 Tstat Whip P 15 Tstat Whip P 15 Tstat Whip R 35 Tstat Whip F 25 Tstat Whip Configured None Y 20 Configured None Y 35 Tstat Whip F 40 Configured None Y 35 Tstat Whip F 40 Configured None Y 40 Configured None Y 50 Configured None Y 60 Configured None None None None None None None None			Α	No Tstat Whip						
C 25 Tstat Whip Configured			В	15' Tstat Whip	Factory	V	V			
E			С	25' Tstat Whip	Configured	Yes	Yes			
F			D	35' Tstat Whip	1					
G 25' Tstat Whip Configured None Ye			E	No Tstat Whip						
G 25' Tstat Whip			F	15' Tstat Whip	Field					
J No Tstat Whip K 15' Tstat Whip Factory Yes No			G	25' Tstat Whip		None	Yes			
K			Н	35' Tstat Whip	1					
L 25' Tstat Whip Configured Yes No			J	No Tstat Whip						
L 25' Tstat Whip Configured Yes No.			K	15' Tstat Whip	Factory					
N No Tstat Whip P 15' Tstat Whip Configured None You			L	25' Tstat Whip		Yes	None			
P 15' Tstat Whip Factory None You			M	35' Tstat Whip	1					
Q 25' Tstat Whip Configured None Ye			N	No Tstat Whip						
Q 25' Tstat Whip Configured None None R 35' Tstat Whip			Р	15' Tstat Whip	Factory					
0 No Tstat Whip Field Configured None None None Note			Q	25' Tstat Whip		None	Yes			
1			R	35' Tstat Whip	1					
2 25' Tstat Whip Configured None N			0	No Tstat Whip						
2 25' Tstat Whip Configured			1	15' Tstat Whip	Field					
4 No Tstat Whip Factory None No 5 15' Tstat Whip Factory Configured None No 6 25' Tstat Whip Configured No Type 14 0 Standard			2	25' Tstat Whip	Configured	None	None			
5 15' Tstat Whip Factory Configured None No 6 25' Tstat Whip Configured No No Type 14 0 Standard			3	35' Tstat Whip	1					
6 25' Tstat Whip Configured None None 7 35' Tstat Whip Type 14 0 Standard			4	No Tstat Whip						
Type 14 0 Standard Configured Total Conf			5	15' Tstat Whip	Factory	Nama	Nama			
Type 14 0 Standard			6	25' Tstat Whip		ivone	None			
1787			7	35' Tstat Whip	1					
Revision 15 A Hybrid Cabinet Series	Туре	14 0	Standard							
	Revision	15 A	Hybrid Cabinet Series							

TSL Series Nomenclature – Chassis

Section	Position	Digit Value	Description
Series	1-3	TSL	Vertical Stack Ducted & Hybrid Application
Unit Size	4-5	09	09 - 0.75 ton
		12	12 - 1 ton
		15	15 - 1.25 ton
		18	18 - 1.5 ton
		24	24 - 2 ton
		30	30 - 2.5 ton
		36	36 - 3 ton
Voltage	6	Е	265/60/1
		G	208-230/60/1
Chassis Options	7	Α	Stainless Steal Drain Pan
		В	Ultra Quiet
		С	Stainless Steal Drain Pan & Ultra Quiet
		D	Stainless Steal Drain Pan & Connection to communicating thermostat
		Ε	Ultra Quiet & Connection to communicating thermostat
		F	Stainless Steal Drain Pan, Ultra Quiet, & Connection to communicating thermostat
		G	Connection to communicating thermostat
		Н	Stainless Steal Drain Pan & RIB Relay
		K	Ultra Quiet & RIB Relay
		L	Stainless Steal Drain Pan, Ultra Quiet, & RIB Relay
		М	RIB Relay
		N	Stainless Steal Drain Pan, RIB Relay, & Connection to communicating thermostat
		Р	Ultra Quiet, RIB Relay, & Connection to communicating thermostat
		Q	Stainless Steal Drain Pan, Ultra Quiet, , RIB Relay, & Connection to communicating thermostat
		R	RIB Relay & Connection to communicating thermostat
		S	None
Controls	8	Α	CXM
		В	DXM2
		С	CXM w/MPC
		D	DXM2 w/MPC
Auto-Flow Regulator	9	С	1.5 GPM
		D	2 GPM

Table Continue on Next Page

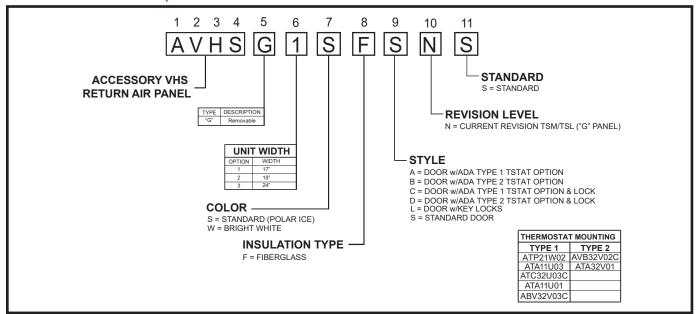
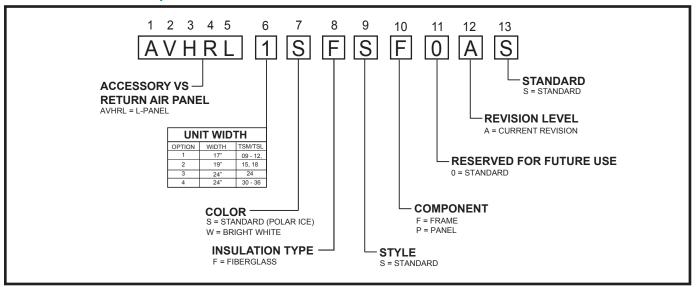
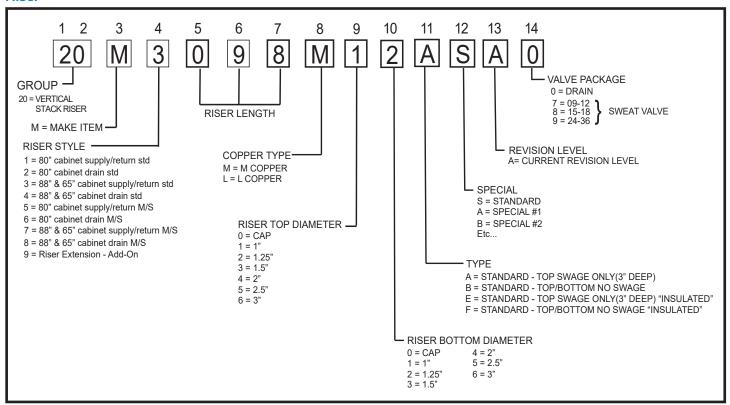

TSL Series Nomenclature – Chassis

Table Continue from Previous Page

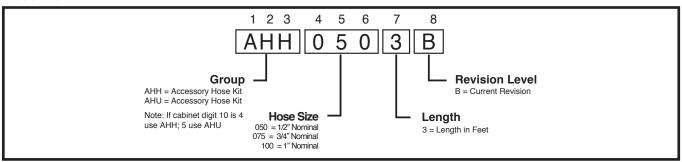

Section	Position	Digit Value	Description
Occion	1 03111011	E	2.5 GPM
		F	3 GPM
		G	3.5 GPM
		Н	4 GPM
		J	5 GPM
		K	6 GPM
		L	7 GPM
		М	8 GPM
		N	9 GPM
		Р	10.5 GPM
		S	None
Water Circuit Options	10	S	None
		М	2-Way Water Valve - Fail Closed
		N	2-Way Water Valve - Fail Opened
		G	3-Way Water Valve
		Т	Modulating Water Valve
		Р	Secondary Circulating Pump
		Н	Hydronic Heating w/2-Way Water Valve - Fail Closed
		J	Hydronic Heating w/2-Way Water Valve - Fail Opened
		L	Hydronic Heating w/3-Way Water Valve
		K	Hydronic Heating w/ 3-Way Water Valve and Secondary Circulating Pump
Heat Exchanger Options	11	С	Tin-Plated Air Coil & Copper Water Coil
		N	Tin-Plated Air Coil & Cupro-Nickel Water Coil
		D	Tin-Plated Air Coil, Copper Water Coil, & Insulated Tubing
		Е	Tin-Plated Air Coil, Cupro-Nickel Coil, & Insulated Tubing
		F	Standard Air Coil, Copper Water Coil, & Insulated Tubing
		G	Standard Air Coil, Cupro-Nickel Coil, & Insulated Tubing
		L	Standard Air Coil & Copper Water Coil
		М	Standard Air Coil, Cupro-Nickel Coil
Shipping	12	6	Chassis Ships in Cabinet (risers not attached)
		S	Standard
Blower Motor	13	Α	PSC - Standard Static (TSL Only)
		С	ECM - Constant Torque
		D	ECM - Constant Volume
Standard	14	S	Standard
Revision	15	С	Current Revision

TSL Series Accessory Nomenclature

Return Air Panel "G" Style

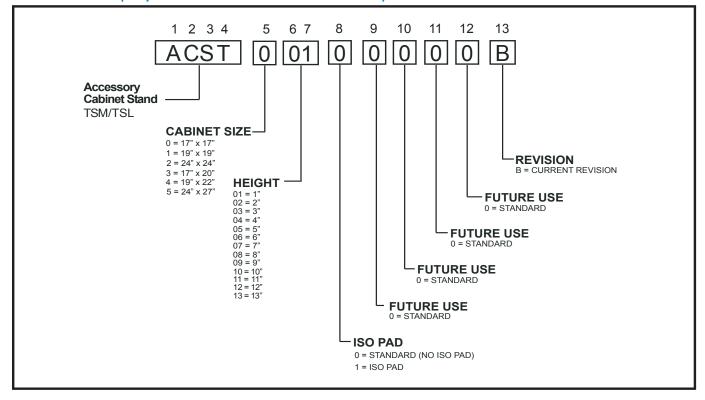


Return Air Panel "L" Style



TSL Series Accessory Nomenclature

Riser



Hose Kit

TSL Series Accessory Nomenclature

Cabinet Stands (Ship loose in bulk for field attachment)

Performance Data - AHRI/ASHRAE/ISO 13256-1

AHRI/ASHRAE/ISO 13256-1. English (I-P) Units

	W	ater Loop I	leat Pump		Ground Loop Heat Pump					
Model with	Cooling	g 86°F	Heating	68°F	Coolin	g 77°F	Heating 32°F			
ECM Motor	Capacity Btuh	EER Btuh/W	Capacity Btuh		Capacity Btuh	EER Btuh/W	Capacity Btuh	СОР		
TSL09	9300	14.8	12500	5.6	10,400	17.3	7,500	3.3		
TSL12	12000	15.4	15500	5.3	12,500	17.5	9,400	3.3		
TSL15	14600	16.3	18900	5.4	15,400	19.2	11,000	3.7		
TSL18	17100	15.1	22300	5.4	18,400	17.8	13,000	3.5		
TSL24	25000	16.4	305000	5.3	26,500	19.4	18,500	3.6		
TSL30	28500	16.1	33500	5.3	29,500	18.4	21,000	3.7		
TSL36	35000	15.0	40500	5.0	38,500 16.7		28,000	3.5		

TSL Hybrid Series

	W	Water Loop Heat Pump									
Model with	Cooling	g 86°F	Heating	68°F							
PSC Motor	Capacity Btuh	EER Btuh/W	Capacity Btuh	СОР							
TSL09	9300	13.5	12500	5.2							
TSL12	12000	14.2	15500	5.2							
TSL15	14000	14.3	19000	5.0							
TSL18	16800	13.2	22800	5.0							
TSL24	24500	15.2	31500	5.0							
TSL30	28000	15.2	34000	5.2							
TSL36	35000	14.3	40500	5.0							

Model	Hydr	onic Heatin	g Entering A	ir 70°
with ECM Motor	CFM	EWT (°F)	GPM	Capacity Btuh
TSL09	400	105	2.25	10200
TSL12	500	105	3.00	12400
TSL15	700	105	3.75	17000
TSL18	800	105	4.50	19300
TSL24	950	105	6.00	25700
TSL30	1150	105	7.50	31100
TSL36	1350	105	9.00	36000

AHRI/ASHRAE/ISO 13256-1. Metric (S-I) Units

Model	N	later Loop	Heat Pump		Ground Loop Heat Pump					
with ECM	Cooling	g 30°C	Heating	20°C	Cooling	25°C	Heating	0°C		
Motor	Capacity kW	EER W/W	Capacity kW	СОР	Capacity kW	EER W/W	Capacity kW	СОР		
TSL09	2.73	4.0	3.67	5.2	3.05	5.1	2.20	3.3		
TSL12	3.52	4.2	4.55	5.2	3.66	5.1	2.75	3.3		
TSL15	4.11	4.2	5.57	5	4.51	5.6	3.22	3.7		
TSL18	4.93	3.9	6.69	5	5.39	5.2	3.81	3.5		
TSL24	7.18	4.5	9.24	5	7.77	5.7	5.42	3.6		
TSL30	8.21	4.5	9.97	5.2	8.65	5.4	6.15	3.7		
TSL36	10.26	4.2	11.88	5	11.28	4.9	8.21	3.5		

TSL Hybrid Series Metric

Madal	V	Water Loop Heat Pump									
Model with PSC	Cooling	g 30°C	Heating	20°C							
Motor	Capacity kW	EER W/W	Capacity kW	СОР							
TSL09	2.73	4.3	3.67	5.6							
TSL12	3.52	4.5	4.55	5.3							
TSL15	4.28	4.8	5.54	5.4							
TSL18	5.01	4.4	6.54	5.4							
TSL24	7.33	4.8	89.44	5.3							
TSL30	8.36	4.7	9.82	5.3							
TSL36	10.26	4.4	11.88	5							

Model	Hydro	nic Heating	Entering Air	21.1°C
with ECM Motor	CFM	EWT (°C)	I/m	Capacity kW
TSL09	400	40.6	8.52	3.0
TSL12	500	40.6	11.36	3.6
TSL15	700	40.6	14.19	5.0
TSL18	800	40.6	17.03	5.7
TSL24	950	40.6	22.71	7.5
TSL30	1150	40.6	28.39	9.1
TSL36	1350	40.6	34.07	10.6

Cooling capacities based upon 27°C DB, 19°C WB entering air temperature Heating capacities based upon 20°C DB, 15°C WB entering air temperature All units AHRI/ISO/ASHRAE 13256-1 rated on high speed motor TAP All ratings based upon operation at lower voltage of dual voltage rated models

Performance Data - Selection Notes

For operation in the shaded area to determine if water can be used in lieu of an antifreeze solution, the Leaving Water Temperature (LWT) must be calculated. Flow must be maintained to a level such that the LWT is maintained above 42°F [5.6°C] when the CXM/DXM2 JW3 jumper is not clipped (see example below). Otherwise, appropriate levels (10° below LWT, See IOM) of a proper antifreeze should be used in systems with leaving water temperatures of 42°F [5.6°C] or below and the JW3 jumper should be clipped. This is due to the potential of the refrigerant temperature being as low as 32°F [0°C], which may lead to a nuisance cutout due to the activation of the Low Temperature Protection (LT1). JW3 should **never** be clipped for standard range equipment or systems without antifreeze.

Example:

At 50°F EWT (Entering Water Temperature) and 1.5 gpm/ton, a 3 ton unit has a HE of 26,830 Btuh. To calculate LWT, rearrange the formula for HE as follows:

 $HE = TD \times GPM \times 500$, where HE = Heat of Extraction (Btuh); TD = temperature difference (EWT - LWT) and GPM = U.S. Gallons per Minute.

 $TD = HE / (GPM \times 500)$

 $TD = 26,830 / (4.5 \times 500)$

TD = 12°F

LWT = EWT - TD

LWT = 50 - 12 = 38°F - Requires appropriate antifreeze (Protect to 28°F), JW3 must be clipped, and extended range insulation option.

In this example, a higher flow rate will be required for EWTs of 50°F without antifreeze. At 3 gpm/ton, the calculation becomes:

(Note higher flow increases HE)

TD = 29,650 / (9GPMx500)

TD = 7°F

LWT = 50 - 7 = 43°F - Water is acceptable, do not clip JW3.

Performance Data - TSL09 with PSC Motor

400 CFM Nominal Airflow

Performance capacities shown in thousands of Btuh

EWT		WF	PD*		C	ooling - EA	T 80/67°	°F	T errorn		Heati	ng - EA1	70°F	
°F	GPM	PSI	FT	TC	sc	Sens/Tot Ratio	kW	HR	EER	нс	kW	HE	LAT	СОР
	1.13	1.6	3.6											
20	1.69	3.0	6.9		Oper	ation not re	ecomme	nded						
	2.25	4.9	11.3							5.7	0.64	3.5	83.1	2.6
	1.13	1.2	2.8	12.2	9.0	0.74	0.53	14.1	23.2	6.4	0.65	4.2	84.9	2.9
30	1.69	2.7	6.2	12.2	8.8	0.72	0.50	13.9	24.4	6.8	0.65	4.5	85.6	3.0
	2.25	4.5	10.3	12.0	8.5	0.71	0.49	13.7	24.7	6.9	0.65	4.7	86.0	3.1
	1.13	1.0	2.4	12.0	9.1	0.75	0.57	14.0	21.0	7.6	0.66	5.4	87.6	3.4
40	1.69	1.9	4.5	12.2	9.0	0.74	0.54	14.1	22.8	8.0	0.66	5.8	88.5	3.5
	2.25	3.1	7.3	12.3	9.0	0.73	0.52	14.0	23.6	8.3	0.67	6.0	89.1	3.6
	1.13	1.0	2.2	11.6	8.9	0.77	0.63	13.7	18.5	8.8	0.67	6.5	90.4	3.9
50	1.69	1.9	4.3	12.0	9.0	0.75	0.58	14.0	20.6	9.3	0.68	7.0	91.6	4.1
	2.25	3.1	7.1	12.1	9.1	0.75	0.56	14.0	21.6	9.6	0.68	7.3	92.3	4.2
	1.13	0.9	2.1	11.0	8.6	0.78	0.68	13.3	16.0	10.1	0.68	7.7	93.2	4.3
60	1.69	1.8	4.2	11.5	8.8	0.77	0.64	13.6	18.0	10.7	0.69	8.4	94.7	4.6
	2.25	3.0	6.9	11.7	8.9	0.76	0.61	13.8	19.1	11.1	0.69	8.7	95.6	4.7
	1.13	0.8	1.9	10.2	8.1	0.80	0.75	12.8	13.7	11.3	0.69	9.0	96.2	4.8
70	1.69	1.8	4.1	10.8	8.5	0.78	0.70	13.2	15.5	12.1	0.70	9.7	97.9	5.1
	2.25	2.9	6.7	11.1	8.6	0.78	0.67	13.4	16.5	12.5	0.70	10.1	98.9	5.2
	1.13	0.8	1.8	9.4	7.7	0.82	0.81	12.2	11.6	12.6	0.70	10.2	99.1	5.3
80	1.69	1.7	3.9	10.0	8.0	0.80	0.76	12.6	13.1	13.5	0.71	11.1	101.1	5.6
	2.25	2.8	6.5	10.3	8.2	0.79	0.74	12.8	14.0	14.0	0.71	11.5	102.2	5.8
	1.13	0.7	1.7	8.6	7.2	0.84	0.88	11.6	9.7	13.9	0.71	11.5	102.1	5.8
90	1.69	1.6	3.8	9.2	7.5	0.82	0.83	12.0	11.0	14.8	0.71	12.4	104.3	6.1
	2.25	2.8	6.4	9.5	7.7	0.81	0.81	12.2	11.8	15.4	0.72	12.9	105.5	6.3
	1.13	0.7	1.7	7.7	6.7	0.87	0.95	11.0	8.1	14.0	0.71	11.5	102.2	5.8
100	1.69	1.6	3.7	8.3	7.0	0.85	0.90	11.4	9.2	14.0	0.71	11.5	102.2	5.8
	2.25	2.7	6.2	8.6	7.2	0.84	0.88	11.6	9.8	14.0	0.71	11.5	102.2	5.8
	1.13	0.7	1.6	6.9	6.3	0.91	1.02	10.4	6.8	14.0	0.71	11.5	102.2	5.8
110	1.69	1.6	3.6	7.4	6.6	0.88	0.98	10.8	7.6	14.0	0.71	11.5	102.2	5.8
	2.25	2.6	6.1	7.7	6.7	0.87	0.95	11.0	8.1	14.0	0.71	11.5	102.2	5.8
	1.13	0.7	1.6	6.2	6.0	0.96	1.10	10.0	5.7	14.0	0.71	11.5	102.2	5.8
120	1.69	1.5	3.5	6.6	6.2	0.93	1.05	10.2	6.3	14.0	0.71	11.5	102.2	5.8
	2.25	2.6	5.9	6.9	6.3	0.91	1.03	10.4	6.7	14.0	0.71	11.5	102.2	5.8
			vtrapolatio											

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units. See performance correction tables for operating conditions other than those listed above.

Table does not reflect corrections for Fan and Pump watts used is ISO-13256. Operation below $40^{\circ}F$ EWT is based upon 20% methanol antifreeze solution. All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of CLM Modulating Water valve. At these conditions, water flow will be reduced

in order to maintain a leaving water temperature of 70 $^\circ\text{F}$

Operation in the lighter shaded areas may require antifreeze. See Performance Data Selection Notes for operation in the lighter shaded areas.

Performance Data - TSL12 with PSC Motor

450 CFM Nominal Airflow

Performance capacities shown in thousands of Btuh

EWT		W	PD*		C	ooling - EA	T 80/67°	°F			Heati	ng - EAT	70°F	
°F	GPM	PSI	FT	тс	sc	Sens/Tot Ratio	kW	HR	EER	нс	kW	HE	LAT	СОР
	1.50	2.3	5.3											
20	2.25	4.7	10.8		Oper	ation not re	ecomme	nded						
	3.00	7.8	18.0							7.6	0.87	4.7	85.7	2.6
	1.50	2.1	4.7	14.5	9.7	0.67	0.63	16.6	23.0	8.8	0.89	5.8	88.1	2.9
30	2.25	4.3	9.9	14.3	9.3	0.65	0.60	16.3	23.6	9.3	0.89	6.3	89.1	3.0
	3.00	7.0	16.2	14.0	9.0	0.64	0.60	16.1	23.6	9.6	0.90	6.5	89.6	3.1
	1.50	1.5	3.6	14.4	10.0	0.69	0.68	16.7	21.2	10.5	0.91	7.4	91.6	3.4
40	2.25	3.1	7.3	14.5	9.8	0.67	0.64	16.7	22.6	11.1	0.92	8.0	92.8	3.5
	3.00	5.2	12.1	14.5	9.6	0.67	0.62	16.6	23.2	11.4	0.92	8.3	93.4	3.6
	1.50	1.5	3.5	14.0	9.9	0.71	0.74	16.6	18.9	12.1	0.93	9.0	94.9	3.8
50	2.25	3.1	7.1	14.4	10.0	0.69	0.69	16.7	20.7	12.8	0.94	9.6	98.4	4.0
	3.00	5.1	11.8	14.5	9.9	0.69	0.67	16.8	21.5	13.2	0.94	10.0	97.2	4.1
	1.50	1.5	3.4	13.4	9.7	0.73	0.82	16.2	16.4	13.8	0.95	10.5	98.3	4.2
60	2.25	3.0	6.9	13.9	9.9	0.71	0.76	16.5	18.3	14.6	0.96	11.3	100.0	4.4
	3.00	5.0	11.4	14.1	10.0	0.71	0.73	16.6	19.2	15.1	0.97	11.8	100.9	4.6
	1.50	1.4	3.3	12.6	9.4	0.75	0.89	15.6	14.1	15.4	0.97	12.1	101.6	4.6
70	2.25	2.9	6.7	13.2	9.7	0.73	0.84	16.0	15.8	16.4	0.98	13.0	103.6	4.9
	3.00	4.8	11.1	13.5	9.8	0.73	0.81	16.2	16.7	16.9	0.99	13.5	104.7	5.0
	1.50	1.4	3.2	11.7	9.0	0.77	0.98	15.0	11.9	17.1	0.99	13.7	105.0	5.0
80	2.25	2.8	6.5	12.3	9.3	0.75	0.92	15.5	13.4	18.2	1.01	14.8	107.4	5.3
	3.00	4.7	10.8	12.6	9.4	0.75	0.89	15.7	14.2	18.8	1.01	15.4	108.7	5.5
	1.50	1.3	3.1	10.7	8.4	0.79	1.06	14.3	10.0	18.8	1.01	15.3	108.6	5.4
90	2.25	2.8	6.4	11.3	8.8	0.77	1.01	14.8	11.3	20.1	1.03	16.6	111.3	5.7
	3.00	4.6	10.5	11.7	9.0	0.77	0.98	15.0	12.0	20.9	1.04	17.3	112.9	5.9
	1.50	1.3	3.0	9.7	7.9	0.82	1.15	13.6	8.4	18.8	1.01	15.4	108.7	5.5
100	2.25	2.7	6.2	10.3	8.3	0.80	1.10	14.1	9.4	18.8	1.01	15.4	108.7	5.5
	3.00	4.5	10.3	10.7	8.4	0.79	1.07	14.3	10.0	18.8	1.01	15.4	108.7	5.5
	1.50	1.3	2.9	8.7	7.4	0.85	1.24	12.9	7.0	18.8	1.01	15.4	108.7	5.5
110	2.25	2.6	6.1	9.3	7.7	0.83	1.19	13.3	7.8	18.8	1.01	15.4	108.7	5.5
	3.00	4.4	10.1	9.6	7.9	0.82	1.16	13.6	8.3	18.8	1.01	15.4	108.7	5.5
	1.50	1.2	2.8	7.8	6.9	0.88	1.33	12.3	5.9	18.8	1.01	15.4	108.7	5.5
120	2.25	2.6	5.9	8.3	7.2	0.86	1.28	12.7	6.5	18.8	1.01	15.4	108.7	5.5
	3.00	4.3	10.0	8.6	7.3	0.85	1.25	12.9	6.8	18.8	1.01	15.4	108.7	5.5
Interpolati	on is perm	issible e	xtrapolati	on is not										

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units. See performance correction tables for operating conditions other than those listed above.

Table does not reflect corrections for Fan and Pump watts used is ISO-13256. Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of CLM Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70 °F

Operation in the lighter shaded areas may require antifreeze. See Performance Data Selection Notes for operation in the lighter shaded areas.

Performance Data - TSL15 with PSC Motor

600 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

EWT		W	PD*		C	ooling - EA	T 80/67°	F			Heat	ing - EA	Г 70°F	
°F	GPM	PSI	FT	тс	sc	Sens/Tot Ratio	kW	HR	EER	нс	kW	HE	LAT	СОР
	1.88	0.8	1.8											
20	2.81	1.6	3.8		Opera	ation not re	comme	nded						
	3.75	2.7	6.3							9.1	0.99	5.7	84.0	2.7
	1.88	0.6	1.5	18.9	13.9	0.73	0.65	21.1	28.8	10.4	1.02	7.0	86.1	3.0
30	2.81	1.4	3.2	18.5	12.9	0.70	0.62	20.6	29.9	11.0	1.02	7.5	86.9	3.1
	3.75	2.3	5.4	18.1	12.2	0.68	0.61	20.1	29.8	11.3	1.03	7.8	87.4	3.2
	1.88	0.4	1.0	18.8	14.4	0.77	0.72	21.2	26.0	12.5	1.05	8.9	89.2	3.5
40	2.81	0.9	2.1	18.9	14.0	0.74	0.67	21.2	28.3	13.2	1.05	9.6	90.3	3.7
	3.75	1.5	3.5	18.8	13.7	0.73	0.65	21.0	29.1	13.6	1.06	10.0	90.9	3.8
	1.88	0.4	0.9	18.2	14.2	0.78	0.81	20.9	22.5	14.5	1.07	10.9	92.4	4.0
50	2.81	0.9	2.0	18.7	14.4	0.77	0.74	21.2	25.2	15.5	1.08	11.8	93.8	4.2
	3.75	1.4	3.3	18.8	14.3	0.76	0.71	21.2	26.5	16.0	1.09	12.3	94.6	4.3
	1.88	0.4	0.9	17.2	13.7	0.80	0.90	20.3	19.0	16.7	1.09	13.0	95.7	4.5
60	2.81	0.8	1.9	17.9	14.1	0.79	0.83	20.8	21.6	17.8	1.10	14.0	97.4	4.7
	3.75	1.4	3.2	18.3	14.3	0.78	0.80	21.0	23.0	18.4	1.11	14.6	98.3	4.9
	1.88	0.4	0.8	16.0	12.9	0.81	1.01	19.5	15.9	18.9	1.11	15.1	99.0	5.0
70	2.81	0.8	1.8	16.9	13.5	0.80	0.93	20.1	18.1	20.1	1.12	16.3	101.0	5.3
	3.75	1.3	3.0	17.3	13.8	0.79	0.89	20.4	19.4	20.8	1.13	17.0	102.1	5.4
	1.88	0.3	0.8	14.7	12.1	0.82	1.12	18.6	13.1	21.0	1.13	17.1	102.3	5.5
80	2.81	0.7	1.7	15.6	12.7	0.81	1.04	19.2	15.0	22.4	1.14	18.5	104.5	5.8
	3.75	1.3	2.9	16.1	13.0	0.81	1.00	19.5	16.0	23.2	1.14	19.3	105.7	5.9
	1.88	0.3	0.8	13.4	11.2	0.84	1.24	17.7	10.8	23.1	1.14	19.2	105.5	5.9
90	2.81	0.7	1.7	14.3	11.8	0.82	1.16	18.3	12.3	24.6	1.15	20.7	107.9	6.3
	3.75	1.2	2.8	14.8	12.1	0.82	1.12	18.6	13.1	25.4	1.16	21.5	109.1	6.4
	1.88	0.3	0.7	12.2	10.5	0.87	1.37	16.8	8.9	23.2	1.14	19.3	105.7	5.9
100	2.81	0.7	1.6	12.9	11.0	0.85	1.29	17.3	10.0	23.2	1.14	19.3	105.7	5.9
	3.75	1.2	2.7	13.4	11.2	0.84	1.25	17.6	10.7	23.2	1.14	19.3	105.7	5.9
	1.88	0.3	0.7	11.0	10.0	0.91	1.49	16.1	7.4	23.2	1.14	19.3	105.7	5.9
110	2.81	0.7	1.5	11.7	10.3	0.88	1.42	16.5	8.2	23.2	1.14	19.3	105.7	5.9
	3.75	1.1	2.6	12.0	10.5	0.87	1.38	16.7	8.7	23.2	1.14	19.3	105.7	5.9
	1.88	0.3	0.7	10.2	9.9	0.97	1.62	15.7	6.3	23.2	1.14	19.3	105.7	5.9
120	2.81	0.6	1.5	10.6	9.9	0.93	1.55	15.9	6.9	23.2	1.14	19.3	105.7	5.9
	3.75	1.1	2.5	10.9	10.0	0.92	1.51	16.0	7.2	23.2	1.14	19.3	105.7	5.9
nternolati	on is nerm	nissible (extrapolat	ion is not										

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units. See performance correction tables for operating conditions other than those listed above.

Table does not reflect corrections for Fan and Pump watts used is ISO-13256. Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of CLM Modulating Water valve. At these conditions, water flow will be reduced

in order to maintain a leaving water temperature of 70 $^\circ\text{F}$ Operation in the lighter shaded areas may require antifreeze. See Performance Data Selection Notes for operation in the lighter shaded areas.

Performance Data - TSL18 with PSC Motor

700 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

FIAT		WP	D*		Co	oling - EAT	80/67°	F	. 511			ting - EA		as of Btur
°F	GPM	PSI	FT	тс	sc	Sens/Tot Ratio		HR	EER	нс	kW	HE	LAT	СОР
	2.25	0.8	1.8											
20	3.38	1.9	4.4		Operat	tion not red	comme	nded						
	4.50	3.3	7.7							10.2	1.16	6.2	83.4	2.6
	2.25	0.6	1.4	20.4	14.1	0.69	0.82	23.2	25.1	12.1	1.19	8.0	85.9	3.0
30	3.38	1.6	3.7	20.2	13.6	0.67	0.77	22.9	26.4	12.8	1.20	8.7	86.8	3.1
	4.50	2.8	6.6	20.0	13.2	0.66	0.75	22.6	26.8	13.1	1.21	9.0	87.3	3.2
	2.25	0.5	1.1	20.2	14.3	0.71	0.90	23.2	22.5	14.6	1.23	10.4	89.3	3.5
40	3.38	1.2	2.7	20.4	14.2	0.70	0.84	23.3	24.4	15.4	1.24	11.2	90.3	3.6
	4.50	2.0	4.7	20.4	14.1	0.69	0.81	23.2	25.2	15.9	1.25	11.6	90.9	3.7
	2.25	0.4	1.0	19.5	14.1	0.73	0.99	22.8	19.6	17.0	1.26	12.7	92.4	3.9
50	3.38	1.1	2.6	20.0	14.3	0.71	0.92	23.2	21.7	17.9	1.27	13.6	93.6	4.1
	4.50	2.0	4.5	20.2	14.3	0.71	0.89	23.3	22.7	18.4	1.28	14.0	94.3	4.2
	2.25	0.4	1.0	18.4	13.7	0.74	1.10	22.2	16.8	19.2	1.28	14.8	95.3	4.4
60	3.38	1.1	2.5	19.2	14.0	0.73	1.02	22.7	18.7	20.2	1.29	15.8	96.7	4.6
	4.50	1.9	4.3	19.5	14.1	0.72	0.99	22.9	19.8	20.8	1.30	16.3	97.4	4.7
	2.25	0.4	0.9	17.1	13.0	0.76	1.22	21.3	14.1	21.3	1.31	16.9	98.1	4.8
70	3.38	1.0	2.4	18.0	13.5	0.75	1.14	21.9	15.9	22.4	1.32	17.9	99.6	5.0
	4.50	1.8	4.1	18.4	13.7	0.74	1.10	22.2	16.8	23.0	1.32	18.5	100.4	5.1
	2.25	0.4	0.9	15.7	12.3	0.78	1.34	20.3	11.7	23.4	1.33	18.8	100.8	5.2
80	3.38	1.0	2.2	16.6	12.8	0.77	1.26	20.9	13.2	24.6	1.34	20.0	102.4	5.4
	4.50	1.7	4.0	17.1	13.0	0.76	1.22	21.3	14.0	25.2	1.35	20.6	103.3	5.5
	2.25	0.4	0.8	14.2	11.6	0.81	1.48	19.3	9.6	25.3	1.35	20.7	103.5	5.5
90	3.38	0.9	2.1	15.1	12.0	0.79	1.40	19.9	10.8	26.7	1.37	22.0	105.2	5.7
	4.50	1.6	3.8	15.6	12.2	0.78	1.36	20.2	11.5	27.4	1.38	22.7	106.1	5.8
	2.25	0.3	0.8	12.7	10.9	0.85	1.64	18.3	7.8	24.6	1.34	20.0	102.4	5.4
100	3.38	0.9	2.1	13.6	11.2	0.83	1.55	18.9	8.8	24.6	1.34	20.0	102.4	5.4
	4.50	1.6	3.7	14.0	11.5	0.82	1.50	19.2	9.3	24.6	1.34	20.0	102.4	5.4
	2.25	0.3	0.7	11.3	10.2	0.91	1.80	17.4	6.3	24.6	1.34	20.0	102.4	5.4
110	3.38	0.9	2.0	12.1	10.6	0.88	1.71	17.9	7.0	24.6	1.34	20.0	102.4	5.4
	4.50	1.5	3.6	12.5	10.7	0.86	1.67	18.1	7.5	24.6	1.34	20.0	102.4	5.4
	2.25	0.3	0.7	10.0	9.8	0.98	1.98	16.8	5.0	24.6	1.34	20.0	102.4	5.4
120	3.38	8.0	1.9	10.6	10.0	0.94	1.89	17.1	5.6	24.6	1.34	20.0	102.4	5.4
	4.50	1.5	3.4	11.0	10.1	0.92	1.84	17.3	6.0	24.6	1.34	20.0	102.4	5.4
Interpolation		21.1	1. 12											

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units. See performance correction tables for operating conditions other than those listed above.

Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below $40^{\circ}F$ EWT is based upon 20% methanol antifreeze solution. All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of CLM Modulating Water valve. At these conditions, water flow will be reduced

in order to maintain a leaving water temperature of 70°F
Operation in the lighter shaded areas may require antifreeze. See Performance Data Selection Notes for operation in the lighter shaded areas.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at **climatemaster.com**. © ClimateMaster, Inc. All rights reserved 2014

Page _____ of ____

Performance Data - TSL24 with PSC Motor

800 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

3.	3.00	PSI	PD* FT			ooling - EAT						ng - EA1		
	3.00		ГІ	TC	sc	Sens/Tot Ratio	kW	HR	EER	нс	kW	HE	LAT	СОР
20 4.		1.2	2.8											
	.50	2.5	5.9		Oper	ation not red	comme	nded						
6.	5.00	4.1	9.6							16.0	1.73	10.1	88.4	2.7
3.	3.00	1.0	2.4	31.0	21.6	0.70	1.19	35.1	26.0	18.1	1.77	12.1	90.9	3.0
30 4.	.50	2.1	5.0	31.2	21.7	0.70	1.10	35.0	28.3	19.1	1.79	13.0	92.0	3.1
6.	6.00	3.6	8.2	31.2	21.7	0.70	1.06	34.8	29.4	19.6	1.80	13.5	92.7	3.2
3.	3.00	0.8	1.7	30.4	21.3	0.70	1.31	34.9	23.1	21.4	1.83	15.2	94.7	3.4
40 4.	.50	1.6	3.6	30.9	21.6	0.70	1.22	35.1	25.4	22.6	1.85	16.3	96.1	3.6
6.	00.	2.5	5.9	31.1	21.7	0.70	1.17	35.1	26.5	23.3	1.86	17.0	96.9	3.7
3.	3.00	0.7	1.7	29.5	20.9	0.71	1.45	34.4	20.4	24.6	1.88	18.2	98.5	3.8
50 4.	.50	1.5	3.4	30.2	21.2	0.70	1.34	34.8	22.5	26.1	1.90	19.6	90.1	4.0
6.	5.00	2.4	5.6	30.5	21.4	0.70	1.29	35.0	23.7	26.9	1.91	20.4	101.1	4.1
3.	3.00	0.7	1.6	28.3	20.3	0.72	1.60	33.8	17.7	27.9	1.93	21.3	102.2	4.2
60 4.	.50	1.4	3.3	29.2	20.8	0.71	1.48	34.3	19.8	29.5	1.96	22.9	104.1	4.4
6.	5.00	2.3	5.4	29.7	21.0	0.71	1.42	34.5	20.8	30.5	1.97	23.7	105.2	4.5
3.	3.00	0.7	1.5	26.9	19.7	0.73	1.77	33.0	15.2	31.1	1.98	24.3	105.9	4.6
70 4.	.50	1.4	3.1	28.0	20.2	0.72	1.64	33.6	17.1	32.9	2.02	26.0	108.0	4.8
6.	00.	2.2	5.2	28.5	20.4	0.72	1.57	33.9	18.1	33.9	2.04	27.0	109.2	4.9
3.	.00	0.6	1.4	25.4	18.9	0.75	1.97	32.1	12.9	34.2	2.04	27.2	109.5	4.9
80 4.	.50	1.3	3.0	26.5	19.5	0.73	1.82	32.7	14.6	36.2	2.09	29.1	111.8	5.1
6.	00.	2.1	5.0	27.1	19.8	0.73	1.75	33.1	15.5	37.3	2.12	30.1	113.1	5.2
3.	.00	0.6	1.4	23.7	18.2	0.77	2.20	31.2	10.8	37.2	2.12	30.0	112.9	5.2
90 4.	.50	1.2	2.9	24.9	18.7	0.75	2.03	31.8	12.3	39.3	2.18	31.9	115.4	5.3
6.	00.	2.1	4.8	25.5	19.0	0.75	1.95	32.2	13.1	40.5	2.22	32.9	116.7	5.3
3.	.00	0.6	1.3	22.0	17.3	0.79	2.46	30.4	8.9	37.3	2.12	30.1	113.1	5.2
100 4.	.50	1.2	2.8	23.2	17.9	0.77	2.27	30.9	10.2	37.3	2.12	30.1	113.1	5.2
6.	00.	2.0	4.6	23.8	18.2	0.76	2.18	31.3	10.9	37.3	2.12	30.1	113.1	5.2
3.	.00	0.6	1.3	20.2	16.4	0.81	2.76	29.6	7.3	37.3	2.12	30.1	113.1	5.2
110 4.	.50	1.2	2.7	21.4	17.0	0.80	2.55	30.1	8.4	37.3	2.12	30.1	113.1	5.2
6.	00.3	1.9	4.5	22.0	17.3	0.79	2.45	30.4	9.0	37.3	2.12	30.1	113.1	5.2
3.	3.00	0.5	1.2	18.4	15.5	0.84	3.12	29.1	5.9	37.3	2.12	30.1	113.1	5.2
120 4.	.50	1.1	2.6	19.6	16.1	0.82	2.88	29.4	6.8	37.3	2.12	30.1	113.1	5.2
6.	00.3	1.9	4.4	20.2	16.4	0.81	2.76	29.6	7.3	37.3	2.12	30.1	113.1	5.2

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units. See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of CLM Modulating Water valve. At these conditions, water flow will be reduced

in order to maintain a leaving water temperature of 70 $^{\circ}\text{F}$

Operation in the lighter shaded areas may require antifreeze. See Performance Data Selection Notes for operation in the lighter shaded areas.

Performance Data - TSL30 with PSC Motor

1,000 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

EWT		WF	PD*		Co	ooling - EAT	Г 80/67°	°F			Heatir	ıg - EAT	70°F	
°F	GPM	PSI	FT	тс	sc	Sens/Tot Ratio	kW	HR	EER	нс	kW	HE	LAT	СОР
	3.75	1.5	3.5											
20	5.63	3.3	7.5		Opera	tion not re	comme	nded						
	7.50	5.4	12.6							17.9	1.88	11.5	86.5	2.8
	3.75	1.3	3.1	33.7	23.5	0.70	1.29	38.1	26.2	20.2	1.89	13.7	88.7	3.1
30	5.63	2.9	6.6	33.3	22.8	0.69	1.21	37.5	27.6	21.1	1.90	14.7	89.5	3.3
	7.50	5.0	11.6	33.0	22.4	0.68	1.17	37.0	28.1	21.6	1.90	15.1	90.0	3.3
	3.75	1.0	2.3	33.6	23.7	0.71	1.41	38.4	23.9	23.6	1.92	17.0	91.8	3.6
40	5.63	2.1	4.9	33.7	23.6	0.70	1.32	38.2	25.5	24.7	1.93	18.1	92.8	3.7
	7.50	3.5	8.0	33.7	23.4	0.70	1.28	38.1	26.3	25.3	1.94	18.7	93.4	3.8
	3.75	1.0	2.2	32.9	23.4	0.71	1.54	38.1	21.3	26.9	1.95	20.2	94.8	4.0
50	5.63	2.0	4.7	33.4	23.7	0.71	1.45	38.4	23.1	28.2	1.97	21.4	96.0	4.2
	7.50	3.4	7.9	33.6	23.7	0.71	1.40	38.4	24.0	28.9	1.98	22.1	96.7	4.3
	3.75	0.9	2.1	31.7	22.8	0.72	1.70	37.5	18.7	30.1	2.00	23.3	97.8	4.4
60	5.63	2.0	4.5	32.5	23.3	0.72	1.59	38.0	20.5	31.6	2.02	24.7	99.2	4.6
	7.50	3.3	7.7	32.9	23.5	0.71	1.54	38.1	21.4	32.4	2.03	25.5	100.0	4.7
	3.75	0.9	2.0	30.1	21.9	0.73	1.87	36.5	16.1	33.3	2.05	26.3	100.8	4.8
70	5.63	1.9	4.4	31.2	22.5	0.72	1.75	37.2	17.8	35.0	2.08	27.9	102.3	4.9
	7.50	3.2	7.5	31.7	22.8	0.72	1.69	37.5	18.7	35.9	2.10	28.7	103.2	5.0
	3.75	0.9	2.0	28.3	20.9	0.74	2.08	35.4	13.6	36.5	2.11	29.3	103.7	5.1
80	5.63	1.8	4.2	29.5	21.6	0.73	1.94	36.1	15.2	38.4	2.15	31.0	105.4	5.2
	7.50	3.2	7.3	30.1	21.9	0.73	1.88	36.5	16.0	39.4	2.18	31.9	106.4	5.3
	3.75	0.8	1.9	26.2	19.9	0.76	2.31	34.1	11.3	39.7	2.19	32.2	106.7	5.3
90	5.63	1.8	4.1	27.5	20.5	0.75	2.16	34.9	12.7	41.7	2.24	34.1	108.5	5.5
	7.50	3.1	7.1	28.2	20.9	0.74	2.09	35.3	13.5	42.8	2.27	35.0	109.5	5.5
	3.75	0.8	1.8	24.1	18.9	0.78	2.58	32.9	9.3	38.4	2.15	31.0	105.4	5.2
100	5.63	1.7	3.9	25.4	19.5	0.77	2.41	33.6	10.5	38.4	2.15	31.0	105.4	5.2
	7.50	3.0	6.8	26.1	19.8	0.76	2.33	34.0	11.2	38.4	2.15	31.0	105.4	5.2
	3.75	0.8	1.8	21.9	17.9	0.82	2.90	31.8	7.6	38.4	2.15	31.0	105.4	5.2
110	5.63	1.7	3.8	23.2	18.5	0.80	2.71	32.4	8.6	38.4	2.15	31.0	105.4	5.2
	7.50	2.8	6.6	23.8	18.8	0.79	2.62	32.8	9.1	38.4	2.15	31.0	105.4	5.2
	3.75	0.7	1.7	19.7	17.1	0.87	3.25	30.8	6.1	38.4	2.15	31.0	105.4	5.2
120	5.63	1.6	3.7	20.9	17.6	0.84	3.05	31.3	6.9	38.4	2.15	31.0	105.4	5.2
	7.50	2.7	6.3	21.6	17.8	0.83	2.94	31.6	7.3	38.4	2.15	31.0	105.4	5.2
	· .		polation is						1					

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units. See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of CLM Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70 $^{\circ}\text{F}$

Operation in the lighter shaded areas may require antifreeze. See Performance Data Selection Notes for operation in the lighter shaded areas.

Performance Data - TSL36 with PSC Motor

1,200 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

EWT		WF	PD*		Co	ooling - EA	- Г 80/67	°F			Heatin	ıg - EAT	70°F	
°F	GPM	PSI	FT	тс	sc	Sens/Tot Ratio	kW	HR	EER	нс	kW	HE	LAT	СОР
	4.50	2.2	5.1											
20	6.75	4.5	10.3		Opera	ition not re	comme	ended						
	9.00	7.2	16.7							22.7	2.25	15.1	87.5	3.0
	4.50	1.8	4.2	41.0	28.2	0.69	1.65	46.6	24.8	25.1	2.29	17.3	89.3	3.2
30	6.75	3.6	8.4	40.1	27.4	0.68	1.55	45.4	25.8	26.1	2.30	18.3	90.1	3.3
	9.00	5.9	13.6	39.4	26.9	0.68	1.51	44.5	26.1	26.7	2.31	18.8	90.5	3.4
	4.50	1.5	3.4	41.2	28.6	0.69	1.80	47.3	22.8	28.9	2.35	20.9	92.3	3.6
40	6.75	2.9	6.8	41.2	28.4	0.69	1.69	46.9	24.3	30.3	2.37	22.2	93.3	3.7
	9.00	4.8	11.0	40.9	28.1	0.69	1.64	46.5	24.9	31.0	2.38	22.9	93.9	3.8
	4.50	1.4	3.2	40.4	28.4	0.70	1.97	47.1	20.5	33.0	2.42	24.7	95.4	4.0
50	6.75	2.8	6.4	41.0	28.6	0.70	1.85	47.3	22.2	34.6	2.44	26.2	96.6	4.1
	9.00	4.5	10.4	41.2	28.6	0.69	1.79	47.3	23.0	35.4	2.46	27.0	97.3	4.2
	4.50	1.3	3.1	38.8	27.7	0.71	2.16	46.2	17.9	37.0	2.49	28.5	98.5	4.4
60	6.75	2.6	6.1	40.0	28.2	0.71	2.03	46.9	19.7	38.8	2.52	30.2	99.9	4.5
	9.00	4.3	9.9	40.4	28.4	0.70	1.96	47.1	20.6	39.8	2.54	31.1	100.6	4.6
	4.50	1.3	2.9	36.8	26.7	0.72	2.39	45.0	15.4	40.9	2.56	32.2	101.5	4.7
70	6.75	2.5	5.8	38.3	27.4	0.72	2.23	45.9	17.2	42.8	2.59	34.0	103.0	4.8
	9.00	4.0	9.3	38.9	27.7	0.71	2.16	46.3	18.1	43.8	2.61	34.9	103.7	4.9
	4.50	1.2	2.7	34.5	25.4	0.74	2.65	43.5	13.0	44.5	2.63	35.6	104.3	5.0
80	6.75	2.3	5.4	36.1	26.3	0.73	2.47	44.5	14.6	46.3	2.66	37.2	105.7	5.1
	9.00	3.8	8.8	36.9	26.7	0.72	2.38	45.0	15.5	47.2	2.68	38.0	106.3	5.2
	4.50	1.1	2.6	32.0	24.0	0.75	2.96	42.1	10.8	47.6	2.69	38.4	106.6	5.2
90	6.75	2.2	5.1	33.6	24.9	0.74	2.75	43.0	12.2	49.1	2.73	39.8	107.8	5.3
	9.00	3.6	8.3	34.4	25.4	0.74	2.66	43.5	13.0	49.7	2.74	40.4	108.3	5.3
	4.50	1.1	2.5	29.4	22.6	0.77	3.33	40.8	8.9	46.3	2.66	37.2	105.7	5.1
100	6.75	2.1	4.9	31.0	23.5	0.76	3.09	41.6	10.0	46.3	2.66	37.2	105.7	5.1
	9.00	3.5	8.0	31.8	23.9	0.75	2.98	42.0	10.7	46.3	2.66	37.2	105.7	5.1
	4.50	1.0	2.4	27.0	21.2	0.78	3.76	39.8	7.2	46.3	2.66	37.2	105.7	5.1
110	6.75	2.0	4.7	28.5	22.0	0.77	3.49	40.4	8.2	46.3	2.66	37.2	105.7	5.1
	9.00	3.3	7.7	29.2	22.4	0.77	3.36	40.7	8.7	46.3	2.66	37.2	105.7	5.1
	4.50	1.0	2.3	24.9	20.0	0.80	4.28	39.5	5.8	46.3	2.66	37.2	105.7	5.1
120	6.75	2.0	4.5	26.1	20.7	0.79	3.96	39.6	6.6	46.3	2.66	37.2	105.7	5.1
	9.00	3.2	7.4	26.8	21.1	0.79	3.81	39.8	7.0	46.3	2.66	37.2	105.7	5.1

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units. See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of CLM Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70 $^{\circ}\text{F}$

Operation in the lighter shaded areas may require antifreeze. See Performance Data Selection Notes for operation in the lighter shaded areas.

Performance Data - TSL09 with ECM Motor

400 CFM Nominal Airflow

Performance capacities shown in thousands of Btuh

EWT		W	PD		С	ooling - E	AT 80/67°I	F		Torriance		ig - EAT 7	0°F	
°F	GPM	PSI	FT	тс	sc	Sens/Tot Ratio		HR	EER	нс	kW	HE	LAT	СОР
	1.13	1.6	3.6											
20	1.69	3.0	6.9		Oper	ation not r	ecommer	nded						
	2.25	4.9	11.3							5.9	0.67	3.7	83.7	2.6
	1.13	1.2	2.8	12.2	9.0	0.74	0.48	13.9	25.4	6.7	0.68	4.4	85.5	2.9
30	1.69	2.7	6.2	12.2	8.7	0.72	0.45	13.7	26.8	7.0	0.68	4.7	86.3	3.0
	2.25	4.5	10.3	12.0	8.5	0.71	0.44	13.6	27.2	7.2	0.68	4.9	86.7	3.1
	1.13	1.0	2.4	12.0	9.1	0.75	0.53	13.8	22.8	7.9	0.69	5.6	88.3	3.4
40	1.69	1.9	4.5	12.2	9.0	0.74	0.49	13.9	24.9	8.4	0.69	6.0	89.3	3.5
	2.25	3.1	7.3	12.3	9.0	0.73	0.47	13.9	25.8	8.6	0.70	6.2	89.9	3.6
	1.13	1.0	2.2	11.6	8.9	0.77	0.58	13.6	20.0	9.2	0.70	6.8	91.2	3.8
50	1.69	1.9	4.3	12.0	9.0	0.75	0.54	13.8	22.3	9.7	0.71	7.3	92.5	4.0
	2.25	3.1	7.1	12.1	9.1	0.75	0.52	13.9	23.4	10.1	0.71	7.6	93.2	4.2
	1.13	0.9	2.1	11.0	8.6	0.78	0.64	13.1	17.2	10.4	0.71	8.0	94.1	4.3
60	1.69	1.8	4.2	11.5	8.8	0.77	0.59	13.5	19.4	11.1	0.72	8.7	95.7	4.5
	2.25	3.0	6.9	11.7	8.9	0.76	0.57	13.6	20.6	11.5	0.72	9.1	96.6	4.7
	1.13	8.0	1.9	10.2	8.2	0.80	0.70	12.6	14.6	11.8	0.72	9.3	97.1	4.8
70	1.69	1.8	4.1	10.8	8.5	0.78	0.65	13.0	16.6	12.6	0.73	10.1	99.0	5.1
	2.25	2.9	6.7	11.1	8.6	0.78	0.63	13.2	17.7	13.0	0.73	10.5	100.1	5.2
	1.13	8.0	1.8	9.4	7.7	0.82	0.77	12.0	12.3	13.1	0.73	10.6	100.2	5.2
80	1.69	1.7	3.9	10.0	8.0	0.80	0.72	12.5	14.0	14.0	0.74	11.5	102.3	5.6
	2.25	2.8	6.5	10.3	8.2	0.79	0.69	12.7	14.9	14.5	0.74	12.0	103.5	5.8
	1.13	0.7	1.7	8.6	7.2	0.84	0.83	11.4	10.3	14.4	0.74	11.9	103.2	5.7
90	1.69	1.6	3.8	9.2	7.5	0.82	0.79	11.9	11.7	15.4	0.74	12.9	105.6	6.1
	2.25	2.8	6.4	9.5	7.7	0.81	0.76	12.1	12.5	16.0	0.75	13.5	107.0	6.3
	1.13	0.7	1.7	7.7	6.7	0.87	0.91	10.8	8.6	14.5	0.74	12.0	103.5	5.8
100	1.69	1.6	3.7	8.3	7.0	0.85	0.86	11.2	9.7	14.5	0.74	12.0	103.5	5.8
	2.25	2.7	6.2	8.6	7.2	0.84	0.83	11.4	10.3	14.5	0.74	12.0	103.5	5.8
	1.13	0.7	1.6	6.9	6.3	0.91	0.98	10.3	7.1	14.5	0.74	12.0	103.5	5.8
110	1.69	1.6	3.6	7.4	6.6	0.88	0.93	10.6	8.0	14.5	0.74	12.0	103.5	5.8
	2.25	2.6	6.1	7.7	6.7	0.87	0.91	10.8	8.5	14.5	0.74	12.0	103.5	5.8
	1.13	0.7	1.6	6.2	6.0	0.96	1.05	9.8	5.9	14.5	0.74	12.0	103.5	5.8
120	1.69	1.5	3.5	6.6	6.2	0.93	1.01	10.1	6.6	14.5	0.74	12.0	103.5	5.8
	2.25	2.6	5.9	6.9	6.3	0.91	0.98	10.2	7.0	14.5	0.74	12.0	103.5	5.8
Internalation			apolation					1	1					

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units. See performance correction tables for operating conditions other than those listed above.

Table does not reflect corrections for Fan and Pump watts used is ISO-13256. Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of CLM Modulating Water valve. At these conditions, water flow will be reduced

in order to maintain a leaving water temperature of 70 $^{\circ}\text{F}$

Operation in the lighter shaded areas may require antifreeze. See Performance Data Selection Notes for operation in the lighter shaded areas.

Performance Data - TSL12 with ECM Motor

450 CFM Nominal Airflow

Performance capacities shown in thousands of Btuh

EWT		W	PD		Co	oling - EAT	80/67°	F		errormanc		ing - EAT	70°F	
°F	GPM	PSI	FT	тс	sc	Sens/Tot Ratio	kW	HR	EER	нс	kW	HE	LAT	СОР
	1.50	2.3	5.3											
20	2.25	4.7	10.8		Operat	tion not red	comme	nded						
	3.00	7.8	18.0							7.2	0.82	4.4	84.9	2.6
	1.50	2.1	4.7	14.5	9.7	0.67	0.58	16.5	25.0	8.4	0.84	5.5	87.3	2.9
30	2.25	4.3	9.9	14.3	9.3	0.65	0.55	16.1	25.7	8.8	0.85	6.0	88.2	3.1
	3.00	7.0	16.2	14.0	9.0	0.64	0.55	15.9	25.7	9.1	0.85	6.2	88.6	3.1
	1.50	1.5	3.6	14.4	10.0	0.69	0.63	16.6	22.9	10.0	0.86	7.1	90.6	3.4
40	2.25	3.1	7.3	14.5	9.8	0.67	0.59	16.5	24.6	10.6	0.87	7.6	91.7	3.6
	3.00	5.2	12.1	14.5	9.6	0.67	0.57	16.4	25.2	10.9	0.87	7.9	92.3	3.6
	1.50	1.5	3.5	14.0	9.9	0.71	0.69	16.4	20.3	11.6	0.88	8.6	93.8	3.9
50	2.25	3.1	7.1	14.4	10.0	0.69	0.64	16.6	22.3	12.2	0.89	9.2	95.1	4.0
	3.00	5.1	11.8	14.5	9.9	0.69	0.62	16.6	23.3	12.6	0.90	9.6	95.9	4.1
	1.50	1.5	3.4	13.4	9.7	0.73	0.76	16.0	17.5	13.2	0.90	10.1	97.0	4.3
60	2.25	3.0	6.9	13.9	9.9	0.71	0.71	16.3	19.6	13.9	0.91	10.8	98.6	4.5
	3.00	5.0	11.4	14.1	10.0	0.71	0.68	16.4	20.6	14.4	0.92	11.2	99.5	4.6
	1.50	1.4	3.3	12.6	9.4	0.75	0.84	15.5	15.0	14.8	0.92	11.6	100.3	4.7
70	2.25	2.9	6.7	13.2	9.7	0.73	0.78	15.9	16.8	15.7	0.94	12.5	102.1	4.9
	3.00	4.8	11.1	13.5	9.8	0.73	0.76	16.1	17.8	16.2	0.94	12.9	103.2	5.0
	1.50	1.4	3.2	11.7	9.0	0.77	0.93	14.8	12.6	16.4	0.94	13.1	103.6	5.1
80	2.25	2.8	6.5	12.3	9.3	0.75	0.87	15.3	14.2	17.4	0.96	14.2	105.8	5.3
	3.00	4.7	10.8	12.7	9.4	0.74	0.84	15.5	15.1	18.0	0.96	14.7	107.0	5.5
	1.50	1.3	3.1	10.7	8.5	0.79	1.01	14.2	10.6	18.0	0.96	14.7	107.0	5.5
90	2.25	2.8	6.4	11.4	8.8	0.77	0.95	14.6	11.9	19.3	0.98	15.9	109.6	5.8
	3.00	4.6	10.5	11.7	9.0	0.77	0.92	14.9	12.7	20.0	0.99	16.6	111.0	5.9
	1.50	1.3	3.0	9.7	7.9	0.82	1.10	13.5	8.8	18.0	0.96	14.7	107.0	5.5
100	2.25	2.7	6.2	10.3	8.3	0.80	1.05	13.9	9.9	18.0	0.96	14.7	107.0	5.5
	3.00	4.5	10.3	10.7	8.4	0.79	1.02	14.1	10.5	18.0	0.96	14.7	107.0	5.5
	1.50	1.3	2.9	8.7	7.4	0.85	1.19	12.8	7.3	18.0	0.96	14.7	107.0	5.5
110	2.25	2.6	6.1	9.3	7.7	0.83	1.14	13.2	8.2	18.0	0.96	14.7	107.0	5.5
	3.00	4.4	10.1	9.6	7.9	0.82	1.11	13.4	8.7	18.0	0.96	14.7	107.0	5.5
	1.50	1.2	2.8	7.8	6.9	0.88	1.28	12.2	6.1	18.0	0.96	14.7	107.0	5.5
120	2.25	2.6	5.9	8.3	7.2	0.86	1.23	12.5	6.8	18.0	0.96	14.7	107.0	5.5
	3.00	4.3	10.0	8.6	7.3	0.85	1.20	12.7	7.1	18.0	0.96	14.7	107.0	5.5
Interpolation	is nermiss	ible extrano	olation is not											

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units. See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of CLM Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70 °F

Operation in the lighter shaded areas may require antifreeze. See Performance Data Selection Notes for operation in the lighter shaded areas.

Performance Data - TSL15 with ECM Motor

600 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

FIAT		W	PD		С	ooling - EA	T 80/67°	°F	23111	nance cap		ng - EAT		
°F	GPM	PSI	FT	тс	sc	Sens/Tot Ratio	kW	HR	EER	нс	kW	HE	LAT	СОР
	1.88	0.5	1.2											
20	2.81	1.6	3.8		Oper	ation not re	ecomme	nded						
	3.75	2.7	6.3							8.9	0.92	5.7	83.6	2.8
	1.88	0.4	1.0	18.9	13.8	0.73	0.57	20.8	32.8	10.2	0.94	7.0	85.7	3.2
30	2.81	1.4	3.2	18.4	12.9	0.70	0.54	20.3	34.2	10.7	0.95	7.5	86.5	3.3
	3.75	2.3	5.4	18.1	12.2	0.67	0.53	19.9	34.2	11.0	0.95	7.8	86.9	3.4
	1.88	0.3	0.7	18.8	14.4	0.76	0.64	21.0	29.2	12.2	0.97	8.9	88.8	3.7
40	2.81	0.9	2.1	18.9	14.0	0.74	0.59	20.9	32.1	12.9	0.98	9.6	89.9	3.9
	3.75	1.5	3.5	18.8	13.7	0.73	0.57	20.8	33.2	13.3	0.98	10.0	90.5	4.0
	1.88	0.3	0.6	18.2	14.2	0.78	0.73	20.7	25.0	14.3	0.99	10.9	92.0	4.2
50	2.81	0.9	2.0	18.7	14.4	0.77	0.66	20.9	28.2	15.2	1.00	11.8	93.4	4.4
	3.75	1.4	3.3	18.8	14.3	0.76	0.63	21.0	29.8	15.7	1.01	12.3	94.2	4.6
	1.88	0.3	0.6	17.2	13.7	0.80	0.82	20.0	21.0	16.4	1.01	13.0	95.3	4.7
60	2.81	0.8	1.9	18.0	14.1	0.79	0.75	20.5	23.9	17.5	1.02	14.0	97.0	5.0
	3.75	1.4	3.2	18.3	14.3	0.78	0.72	20.7	25.5	18.1	1.03	14.6	97.9	5.2
	1.88	0.3	0.6	16.1	13.0	0.81	0.93	19.2	17.3	18.6	1.03	15.1	98.6	5.3
70	2.81	0.8	1.8	16.9	13.5	0.80	0.85	19.8	19.9	19.9	1.04	16.3	100.6	5.6
	3.75	1.3	3.0	17.3	13.8	0.79	0.81	20.1	21.3	20.6	1.05	17.0	101.7	5.7
	1.88	0.2	0.6	14.8	12.1	0.82	1.04	18.3	14.2	20.7	1.05	17.1	101.9	5.8
80	2.81	0.7	1.7	15.7	12.7	0.81	0.96	19.0	16.3	22.1	1.06	18.5	104.1	6.1
	3.75	1.3	2.9	16.1	13.0	0.81	0.92	19.3	17.5	22.9	1.06	19.3	105.3	6.3
	4.50	1.1	2.6	13.5	11.3	0.84	1.16	17.4	11.6	22.8	1.06	19.2	105.1	6.3
90	6.75	2.2	5.1	14.3	11.8	0.82	1.08	18.0	13.2	24.3	1.07	20.7	107.5	6.6
	9.00	3.6	8.3	14.8	12.1	0.82	1.04	18.3	14.2	25.1	1.08	21.5	108.7	6.8
	4.50	1.1	2.5	12.2	10.5	0.87	1.28	16.6	9.5	22.9	1.06	19.3	105.3	6.3
100	6.75	2.1	4.9	13.0	11.0	0.85	1.21	17.1	10.7	22.9	1.06	19.3	105.3	6.3
	9.00	3.5	8.0	13.4	11.2	0.84	1.17	17.4	11.4	22.9	1.06	19.3	105.3	6.3
	4.50	1.0	2.4	11.1	10.0	0.91	1.41	15.9	7.8	22.9	1.06	19.3	105.3	6.3
110	6.75	2.0	4.7	11.7	10.3	0.88	1.34	16.3	8.7	22.9	1.06	19.3	105.3	6.3
	9.00	3.3	7.7	12.1	10.5	0.87	1.30	16.5	9.3	22.9	1.06	19.3	105.3	6.3
	4.50	1.0	2.3	10.2	9.9	0.97	1.54	15.4	6.6	22.9	1.06	19.3	105.3	6.3
120	6.75	2.0	4.5	10.6	9.9	0.93	1.47	15.6	7.2	22.9	1.06	19.3	105.3	6.3
	9.00	3.2	7.4	10.9	10.0	0.92	1.43	15.8	7.6	22.9	1.06	19.3	105.3	6.3
Interpolation			-1-411-											

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units. See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of CLM Modulating Water valve. At these conditions, water flow will be reduced

in order to maintain a leaving water temperature of 70 $^{\circ}\text{F}$

Operation in the lighter shaded areas may require antifreeze. See Performance Data Selection Notes for operation in the lighter shaded areas.

Performance Data - TSL18 with ECM Motor

700 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

EWT		W	PD		Co	oling - EAT	80/67°l	=			Heatii	ng - EAT	70°F	
°F	GPM	PSI	FT	тс	sc	Sens/Tot Ratio	kW	HR	EER	нс	kW	HE	LAT	СОР
	2.25	0.8	1.8											
20	3.38	1.9	4.4		Operat	ion not red	commer	nded						
	4.50	3.3	7.7							9.1	1.06	5.5	82.0	2.5
	2.25	0.6	1.4	20.4	14.1	0.69	0.72	22.9	28.4	11.1	1.10	7.4	84.7	3.0
30	3.38	1.6	3.7	20.2	13.6	0.67	0.67	22.5	30.1	11.7	1.11	7.9	85.5	3.1
	4.50	2.8	6.6	20.0	13.2	0.66	0.65	22.2	30.7	12.1	1.11	8.3	85.9	3.2
	2.25	0.5	1.1	20.2	14.3	0.71	0.80	22.9	25.3	13.6	1.14	9.7	87.9	3.5
40	3.38	1.2	2.7	20.4	14.2	0.70	0.74	23.0	27.5	14.3	1.15	10.4	88.9	3.7
	4.50	2.0	4.7	20.4	14.1	0.69	0.72	22.9	28.6	14.7	1.15	10.8	89.5	3.8
	2.25	0.4	1.0	19.5	14.1	0.72	0.89	22.5	21.8	15.9	1.17	11.9	91.0	4.0
50	3.38	1.1	2.6	20.0	14.3	0.71	0.83	22.8	24.2	16.8	1.18	12.7	92.1	4.2
	4.50	2.0	4.5	20.2	14.3	0.71	0.80	22.9	25.4	17.2	1.18	13.2	92.7	4.3
	2.25	0.4	1.0	18.5	13.7	0.74	1.00	21.9	18.5	18.1	1.19	14.0	93.8	4.4
60	3.38	1.1	2.5	19.2	14.0	0.73	0.93	22.4	20.7	19.0	1.20	14.9	95.1	4.6
	4.50	1.9	4.3	19.5	14.1	0.72	0.89	22.6	21.9	19.5	1.21	15.4	95.8	4.7
	2.25	0.4	0.9	17.2	13.0	0.76	1.12	21.0	15.4	20.1	1.21	16.0	96.6	4.9
70	3.38	1.0	2.4	18.0	13.5	0.75	1.04	21.6	17.4	21.1	1.22	17.0	97.9	5.1
	4.50	1.8	4.1	18.4	13.7	0.74	1.00	21.9	18.4	21.7	1.23	17.5	98.6	5.2
	2.25	0.4	0.9	15.8	12.3	0.78	1.25	20.0	12.7	22.1	1.24	17.9	99.2	5.2
80	3.38	1.0	2.2	16.7	12.8	0.77	1.16	20.6	14.3	23.2	1.25	19.0	100.6	5.4
	4.50	1.7	4.0	17.1	13.0	0.76	1.12	21.0	15.2	23.8	1.26	19.5	101.4	5.6
	2.25	0.4	0.8	14.3	11.6	0.81	1.39	19.0	10.3	24.0	1.26	19.7	101.7	5.6
90	3.38	0.9	2.1	15.2	12.0	0.79	1.30	19.6	11.7	25.3	1.28	20.9	103.3	5.8
	4.50	1.6	3.8	15.6	12.3	0.78	1.26	19.9	12.4	25.9	1.29	21.5	104.2	5.9
	2.25	0.3	0.8	12.8	10.9	0.85	1.54	18.0	8.3	23.2	1.25	19.0	100.6	5.4
100	3.38	0.9	2.1	13.6	11.3	0.83	1.45	18.6	9.4	23.2	1.25	19.0	100.6	5.4
	4.50	1.6	3.7	14.1	11.5	0.82	1.41	18.9	10.0	23.2	1.25	19.0	100.6	5.4
	2.25	0.3	0.7	11.3	10.2	0.90	1.70	17.1	6.7	23.2	1.25	19.0	100.6	5.4
110	3.38	0.9	2.0	12.1	10.6	0.87	1.61	17.6	7.5	23.2	1.25	19.0	100.6	5.4
	4.50	1.5	3.6	12.5	10.7	0.86	1.57	17.8	8.0	23.2	1.25	19.0	100.6	5.4
	2.25	0.3	0.7	10.0	9.8	0.97	1.88	16.4	5.3	23.2	1.25	19.0	100.6	5.4
120	3.38	0.8	1.9	10.7	10.0	0.94	1.79	16.8	6.0	23.2	1.25	19.0	100.6	5.4
	4.50	1.5	3.4	11.0	10.1	0.92	1.74	17.0	6.3	23.2	1.25	19.0	100.6	5.4
nterpolatio	n is permiss	sible extra	nolation is	not										

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units. See performance correction tables for operating conditions other than those listed above.

Table does not reflect corrections for Fan and Pump watts used is ISO-13256. Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of CLM Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70 $^{\circ}\text{F}$

Operation in the lighter shaded areas may require antifreeze. See Performance Data Selection Notes for operation in the lighter shaded areas.

Performance Data - TSL24 with ECM Motor

800 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

EWT		W	PD		Co	oling - EAT	80/67°F				Heati	ng - EA		
°F	GPM	PSI	FT	тс	sc	Sens/Tot Ratio	kW	HR	EER	нс	kW	HE	LAT	СОР
	3.00	1.2	2.8											
20	4.50	2.5	5.9		Operat	ion not rec	ommen	ded						
	6.00	4.1	9.6							15.0	1.62	9.4	87.3	2.7
	3.00	1.0	2.4	31.0	21.6	0.70	1.08	34.7	28.8	17.1	1.66	11.5	89.8	3.0
30	4.50	2.1	5.0	31.2	21.7	0.70	0.99	34.6	31.6	18.0	1.68	12.3	90.8	3.2
	6.00	3.6	8.2	31.2	21.7	0.70	0.95	34.4	33.0	18.6	1.69	12.8	91.4	3.2
	3.00	0.8	1.7	30.4	21.3	0.70	1.20	34.5	25.4	20.4	1.71	14.5	93.5	3.5
40	4.50	1.6	3.6	30.9	21.6	0.70	1.10	34.7	28.1	21.5	1.73	15.6	94.8	3.6
	6.00	2.5	5.9	31.1	21.7	0.70	1.06	34.7	29.4	22.1	1.74	16.2	95.6	3.7
	3.00	0.7	1.7	29.5	20.9	0.71	1.33	34.0	22.2	23.6	1.77	17.5	97.2	3.9
50	4.50	1.5	3.4	30.3	21.2	0.70	1.22	34.4	24.7	24.9	1.79	18.8	98.8	4.1
	6.00	2.4	5.6	30.6	21.4	0.70	1.17	34.6	26.0	25.7	1.80	19.6	99.7	4.2
	3.00	0.7	1.6	28.3	20.3	0.72	1.48	33.4	19.1	26.8	1.82	20.6	100.9	4.3
60	4.50	1.4	3.3	29.3	20.8	0.71	1.36	33.9	21.5	28.3	1.84	22.1	102.7	4.5
	6.00	2.3	5.4	29.7	21.0	0.71	1.31	34.1	22.7	29.2	1.86	22.9	103.7	4.6
	3.00	0.7	1.5	26.9	19.7	0.73	1.65	32.6	16.3	29.9	1.87	23.5	104.5	4.7
70	4.50	1.4	3.1	28.0	20.2	0.72	1.52	33.2	18.4	31.7	1.91	25.2	106.6	4.9
	6.00	2.2	5.2	28.5	20.4	0.72	1.46	33.5	19.5	32.7	1.93	26.1	107.7	5.0
	3.00	0.6	1.4	25.4	19.0	0.75	1.85	31.7	13.7	33.0	1.93	26.4	108.1	5.0
80	4.50	1.3	3.0	26.6	19.5	0.73	1.70	32.4	15.6	34.9	1.98	28.2	110.3	5.2
	6.00	2.1	5.0	27.1	19.8	0.73	1.63	32.7	16.6	36.0	2.01	29.1	111.6	5.3
	3.00	0.6	1.4	23.7	18.2	0.77	2.08	30.8	11.4	36.0	2.01	29.1	111.5	5.3
90	4.50	1.2	2.9	24.9	18.7	0.75	1.91	31.5	13.0	38.1	2.07	31.0	113.9	5.4
	6.00	2.1	4.8	25.5	19.0	0.74	1.83	31.8	13.9	39.2	2.11	32.0	115.2	5.4
	3.00	0.6	1.3	22.0	17.3	0.79	2.34	30.0	9.4	36.0	2.01	29.1	111.6	5.3
100	4.50	1.2	2.8	23.2	17.9	0.77	2.15	30.6	10.8	36.0	2.01	29.1	111.6	5.3
	6.00	2.0	4.6	23.8	18.2	0.76	2.07	30.9	11.5	36.0	2.01	29.1	111.6	5.3
	3.00	0.6	1.3	20.2	16.5	0.81	2.64	29.3	7.7	36.0	2.01	29.1	111.6	5.3
110	4.50	1.2	2.7	21.4	17.1	0.80	2.43	29.7	8.8	36.0	2.01	29.1	111.6	5.3
	6.00	1.9	4.5	22.0	17.4	0.79	2.33	30.0	9.4	36.0	2.01	29.1	111.6	5.3
	3.00	0.5	1.2	18.5	15.6	0.84	2.99	28.7	6.2	36.0	2.01	29.1	111.6	5.3
120	4.50	1.1	2.6	19.6	16.2	0.82	2.76	29.0	7.1	36.0	2.01	29.1	111.6	5.3
	6.00	1.9	4.4	20.2	16.5	0.81	2.65	29.3	7.6	36.0	2.01	29.1	111.6	5.3
Interpolation	is nermis	sible ext	rapolation	is not										

Interpolation is permissible, extrapolation is not

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units. See performance correction tables for operating conditions other than those listed above.

Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution. All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of CLM Modulating Water valve. At these conditions, water flow will be reduced

in order to maintain a leaving water temperature of 70 °F
Operation in the lighter shaded areas may require antifreeze. See Performance Data Selection Notes for operation in the lighter shaded areas.

Performance Data - TSL30 with ECM Motor

1,000 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

EWT		W	PD		С	ooling - EA	T 80/67	°F			Heati	ng - EA1	Г 70°F	
°F	GPM	PSI	FT	тс	sc	Sens/Tot Ratio	kW	HR	EER	нс	kW	HE	LAT	СОР
	3.75	1.5	3.5											
20	5.63	3.3	7.5		Opera	ation not re	ecomme	ended						
	7.50	5.4	12.6							17.2	1.80	11.1	85.9	2.8
	3.75	1.3	3.1	33.7	23.4	0.70	1.20	37.8	28.0	19.5	1.82	13.3	88.0	3.1
30	5.63	2.9	6.6	33.3	22.8	0.69	1.13	37.2	29.5	20.3	1.82	14.1	88.88	3.3
	7.50	5.0	11.6	33.0	22.4	0.68	1.09	36.7	30.2	20.8	1.83	14.6	89.2	3.3
	3.75	1.0	2.3	33.6	23.7	0.71	1.32	38.1	25.4	22.7	1.84	16.4	91.0	3.6
40	5.63	2.1	4.9	33.7	23.6	0.70	1.24	38.0	27.2	23.8	1.85	17.5	92.0	3.8
	7.50	3.5	8.0	33.7	23.4	0.70	1.20	37.8	28.1	24.4	1.86	18.0	92.5	3.8
	3.75	1.0	2.2	32.9	23.4	0.71	1.46	37.9	22.5	25.9	1.88	19.5	94.0	4.0
50	5.63	2.0	4.7	33.4	23.7	0.71	1.36	38.1	24.5	27.2	1.89	20.7	95.1	4.2
	7.50	3.4	7.9	33.6	23.7	0.71	1.32	38.1	25.5	27.8	1.90	21.3	95.7	4.3
	3.75	0.9	2.1	31.7	22.8	0.72	1.61	37.2	19.6	29.1	1.92	22.5	96.9	4.4
60	5.63	2.0	4.5	32.5	23.3	0.72	1.51	37.7	21.6	30.5	1.94	23.9	98.2	4.6
	7.50	3.3	7.7	32.9	23.5	0.71	1.46	37.9	22.6	31.3	1.96	24.6	98.9	4.7
	3.75	0.9	2.0	30.1	21.9	0.73	1.79	36.2	16.8	32.2	1.98	25.5	99.8	4.8
70	5.63	1.9	4.4	31.2	22.5	0.72	1.67	36.9	18.7	33.8	2.01	27.0	101.2	4.9
	7.50	3.2	7.5	31.7	22.8	0.72	1.61	37.2	19.7	34.7	2.02	27.8	102.0	5.0
	3.75	0.9	2.0	28.3	20.9	0.74	2.00	35.1	14.2	35.4	2.04	28.4	102.7	5.1
80	5.63	1.8	4.2	29.5	21.6	0.73	1.86	35.9	15.9	37.1	2.08	30.0	104.3	5.2
	7.50	3.2	7.3	30.1	21.9	0.73	1.79	36.2	16.8	38.1	2.10	30.9	105.2	5.3
	3.75	0.8	1.9	26.3	19.9	0.76	2.23	33.9	11.8	38.5	2.11	31.3	105.5	5.3
90	5.63	1.8	4.1	27.6	20.5	0.75	2.08	34.6	13.3	40.4	2.17	33.0	107.3	5.5
	7.50	3.1	7.1	28.2	20.9	0.74	2.01	35.0	14.1	41.4	2.20	33.9	108.3	5.5
	3.75	0.8	1.8	24.1	18.9	0.78	2.50	32.6	9.6	37.1	2.08	30.0	104.3	5.2
100	5.63	1.7	3.9	25.4	19.5	0.77	2.33	33.4	10.9	37.1	2.08	30.0	104.3	5.2
	7.50	3.0	6.8	26.1	19.8	0.76	2.25	33.8	11.6	37.1	2.08	30.0	104.3	5.2
	3.75	0.8	1.8	21.9	17.9	0.82	2.81	31.5	7.8	37.1	2.08	30.0	104.3	5.2
110	5.63	1.7	3.8	23.2	18.5	0.80	2.62	32.2	8.8	37.1	2.08	30.0	104.3	5.2
	7.50	2.8	6.6	23.9	18.8	0.79	2.53	32.5	9.4	37.1	2.08	30.0	104.3	5.2
	3.75	0.7	1.7	19.8	17.1	0.87	3.17	30.6	6.2	37.1	2.08	30.0	104.3	5.2
120	5.63	1.6	3.7	21.0	17.6	0.84	2.96	31.1	7.1	37.1	2.08	30.0	104.3	5.2
	7.50	2.7	6.3	21.6	17.8	0.83	2.86	31.4	7.5	37.1	2.08	30.0	104.3	5.2
ntorpolatio			rapolation	1										

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units. See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of CLM Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70 $^{\circ}\text{F}$

Operation in the lighter shaded areas may require antifreeze. See Performance Data Selection Notes for operation in the lighter shaded areas.

Page _____ of ____

Performance Data - TSL36 with ECM Motor

1,200 CFM Nominal (Rated) Airflow

Performance capacities shown in thousands of Btuh

EVACE		W	PD		Co	ooling - EA	T 80/67°	F		rmance ca		ng - EAT		
°F	GPM	PSI	FT	тс	sc	Sens/Tot Ratio	kW	HR	EER	нс	kW	HE	LAT	СОР
	4.50	2.2	5.1											
20	6.75	4.5	10.3		Opera	tion not re								
	9.00	7.2	16.7							22.1	2.19	14.6	87.0	3.0
	4.50	1.8	4.2	41.0	28.2	0.69	1.58	46.4	25.9	24.4	2.22	16.9	88.8	3.2
30	6.75	3.6	8.4	40.1	27.4	0.68	1.48	45.1	27.0	25.4	2.24	17.8	89.6	3.3
	9.00	5.9	13.6	39.4	26.8	0.68	1.44	44.3	27.4	25.9	2.25	18.3	90.0	3.4
	4.50	1.5	3.4	41.2	28.6	0.69	1.73	47.1	23.8	28.2	2.28	20.4	91.7	3.6
40	6.75	2.9	6.8	41.2	28.4	0.69	1.62	46.7	25.3	29.5	2.30	21.6	92.7	3.7
	9.00	4.8	11.0	40.9	28.1	0.69	1.57	46.3	26.0	30.2	2.32	22.3	93.2	3.8
	4.50	1.4	3.2	40.4	28.4	0.70	1.90	46.9	21.2	32.2	2.35	24.1	94.8	4.0
50	6.75	2.8	6.4	41.0	28.6	0.70	1.78	47.1	23.1	33.7	2.38	25.6	95.9	4.2
	9.00	4.5	10.4	41.2	28.6	0.69	1.72	47.1	23.9	34.5	2.39	26.4	96.6	4.2
	4.50	1.3	3.1	38.9	27.7	0.71	2.09	46.0	18.6	36.1	2.42	27.9	97.8	4.4
60	6.75	2.6	6.1	40.0	28.2	0.71	1.96	46.7	20.5	37.9	2.45	29.5	99.1	4.5
	9.00	4.3	9.9	40.4	28.4	0.70	1.89	46.9	21.4	38.8	2.47	30.4	99.9	4.6
	4.50	1.3	2.9	36.9	26.7	0.72	2.32	44.8	15.9	40.0	2.49	31.5	100.8	4.7
70	6.75	2.5	5.8	38.3	27.4	0.72	2.16	45.7	17.7	41.8	2.53	33.2	102.2	4.8
	9.00	4.0	9.3	38.9	27.7	0.71	2.09	46.1	18.7	42.7	2.55	34.0	102.9	4.9
	4.50	1.2	2.7	34.5	25.4	0.74	2.58	43.3	13.4	43.5	2.56	34.8	103.5	5.0
80	6.75	2.3	5.4	36.1	26.3	0.73	2.40	44.3	15.0	45.2	2.60	36.4	104.8	5.1
	9.00	3.8	8.8	36.9	26.7	0.72	2.31	44.8	15.9	46.1	2.62	37.1	105.5	5.2
	4.50	1.1	2.6	32.0	24.0	0.75	2.89	41.9	11.1	46.5	2.63	37.6	105.8	5.2
90	6.75	2.2	5.1	33.6	24.9	0.74	2.68	42.8	12.5	47.9	2.66	38.9	106.9	5.3
	9.00	3.6	8.3	34.5	25.4	0.74	2.59	43.3	13.3	48.5	2.67	39.4	107.4	5.3
	4.50	1.1	2.5	29.5	22.6	0.77	3.25	40.6	9.1	45.2	2.60	36.4	104.8	5.1
100	6.75	2.1	4.9	31.0	23.5	0.76	3.02	41.3	10.3	45.2	2.60	36.4	104.8	5.1
	9.00	3.5	8.0	31.9	23.9	0.75	2.91	41.8	11.0	45.2	2.60	36.4	102.8	5.1
	4.50	1.0	2.4	27.0	21.2	0.78	3.69	39.6	7.3	45.2	2.60	36.4	104.8	5.1
110	6.75	2.0	4.7	28.5	22.0	0.77	3.42	40.1	8.3	45.2	2.60	36.4	104.8	5.1
	9.00	3.3	7.7	29.2	22.5	0.77	3.29	40.5	8.9	45.2	2.60	36.4	104.8	5.1
	4.50	1.0	2.3	24.9	20.0	0.80	4.20	39.3	5.9	45.2	2.60	36.4	104.8	5.1
120	6.75	2.0	4.5	26.1	20.7	0.79	3.89	39.4	6.7	45.2	2.60	36.4	104.8	5.1
	9.00	3.2	7.4	26.8	21.1	0.79	3.74	39.5	7.2	45.2	2.60	36.4	104.8	5.1
		ssible, extra	1 11 1											

Interpolation is permissible, extrapolation is not.

All entering air conditions are 80°F DB and 67°F WB in cooling and 70°F DB in heating.

All performance data is based upon the lower voltage of dual voltage rated units. See performance correction tables for operating conditions other than those listed above. Table does not reflect corrections for Fan and Pump watts used is ISO-13256.

Operation below 40°F EWT is based upon 20% methanol antifreeze solution.

All performance data is based upon High speed.

Operation below 60°F requires optional insulated water/refrigerant circuit.

Operation in the darker shaded region is only permissible with use of CLM Modulating Water valve. At these conditions, water flow will be reduced in order to maintain a leaving water temperature of 70 °F

Operation in the lighter shaded areas may require antifreeze. See Performance Data Selection Notes for operation in the lighter shaded areas.

Performance Data – TSL09 Hybrid

400 CFM Nominal Airflow

Performance capacities shown in thousands of Btuh

	Hydronic Heating Entering Air 70°F DB										
		lydronic Heati	ng Entering A								
EWT (°F)	GPM	WPD (PSI)	WPD (FT)	Capacity (BTUH)	kW	LAT (°F)					
	1.13	0.6	1.4	5000	0.04	81.5					
90	1.69	2.4	5.4	5400	0.04	82.6					
	2.25	4.1	9.5	5900	0.05	83.6					
	1.13	0.6	1.4	6200	0.04	84.4					
95	1.69	2.3	5.4	6700	0.04	85.7					
	2.25	4.1	9.5	7300	0.05	86.9					
	1.13	0.6	1.3	7400	0.04	87.3					
100	1.69	2.3	5.4	8100	0.04	88.8					
	2.25	4.1	9.4	8800	0.05	90.3					
	1.13	0.6	1.3	8700	0.04	90.1					
105	1.69	2.3	5.3	9400	0.04	91.9					
	2.25	4.1	9.4	10200	0.05	93.6					
	1.13	0.6	1.3	9900	0.04	93.0					
110	1.69	2.3	5.3	10800	0.05	95.0					
	2.25	4.0	9.3	11700	0.05	96.9					
	1.13	0.6	1.3	11100	0.04	95.8					
115	1.69	2.3	5.3	12100	0.05	98.0					
	2.25	4.0	9.3	13100	0.05	100.3					
	1.13	0.6	1.3	12300	0.04	98.7					
120	1.69	2.3	5.3	13400	0.05	101.1					
	2.25	4.0	9.3	14600	0.05	103.6					

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at **climatemaster.com**. © ClimateMaster, Inc., All rights reserved 2014 — LC1007 - 38 —

Page _____ of ____

Performance Data – TSL12 Hybrid

450 CFM Nominal Airflow

Performance capacities shown in thousands of Btuh

	Performance capacities snown in thousands of Btun										
	F	lydronic Heati	ng Entering A								
EWT (°F)	GPM	WPD (PSI)	WPD (FT)	Capacity (BTUH)	kW	LAT (°F)					
	1.50	1.8	4.1	5600	0.06	81.7					
90	2.25	4.1	9.5	6300	0.07	83.1					
	3.00	7.5	17.4	6600	0.09	83.7					
	1.50	1.8	4.0	7000	0.06	84.5					
95	2.25	4.1	9.5	7900	0.07	86.3					
	3.00	7.5	17.3	8200	0.09	87.0					
	1.50	1.7	4.0	8400	0.06	87.4					
100	2.25	4.1	9.4	9400	0.07	89.5					
	3.00	7.5	17.2	9800	0.09	90.3					
	1.50	1.7	4.0	9800	0.06	90.2					
105	2.25	4.1	9.4	11000	0.07	92.6					
	3.00	7.4	17.1	11500	0.09	93.6					
	1.50	1.7	4.0	11200	0.06	93.1					
110	2.25	4.1	9.4	12600	0.07	95.9					
	3.00	7.4	17.1	13100	0.09	96.9					
	1.50	1.7	4.0	12600	0.06	96.0					
115	2.25	4.0	9.3	14100	0.07	99.1					
	3.00	7.4	17.0	14700	0.09	100.3					
	1.50	1.7	4.0	14000	0.06	98.8					
120	2.25	4.0	9.3	15700	0.07	102.3					
	3.00	7.3	17.0	16300	0.09	103.6					

Performance Data – TSL15 Hybrid

600 CFM Nominal Airflow

Performance capacities shown in thousands of Btuh

	Performance capacities snown in thousands of Btun										
	F	lydronic Heati	ng Entering A	Air 70°F DB							
EWT (°F)	GPM	WPD (PSI)	WPD (FT)	Capacity (BTUH)	kW	LAT (°F)					
	1.88	0.3	0.6	7900	0.06	82.2					
90	2.81	2.1	4.9	8300	0.07	82.8					
	3.75	4.0	9.1	8600	0.08	83.3					
	1.88	0.3	0.6	9800	0.06	85.1					
95	2.81	2.1	4.9	10300	0.07	85.9					
	3.75	4.0	9.1	10700	0.08	86.6					
	1.88	0.3	0.6	11700	0.06	88.1					
100	2.81	2.1	4.8	12300	0.07	89.0					
	3.75	3.9	9.1	12900	0.08	89.8					
	1.88	0.2	0.6	13600	0.06	91.0					
105	2.81	2.1	4.8	14300	0.07	92.1					
	3.75	3.9	9.1	15000	0.08	93.1					
	1.88	0.2	0.5	15600	0.06	94.1					
110	2.81	2.1	4.8	16400	0.07	95.2					
	3.75	3.9	9.1	17100	0.09	96.4					
	1.88	0.2	0.5	17600	0.06	97.1					
115	2.81	2.1	4.7	18400	0.07	98.4					
	3.75	3.9	9.0	19300	0.09	99.6					
	1.88	0.2	0.5	19600	0.06	100.1					
120	2.81	2.0	4.7	20500	0.08	101.5					
	3.75	3.9	9.0	21400	0.09	102.9					

Performance Data – TSL18 Hybrid

700 CFM Nominal Airflow

Performance capacities shown in thousands of Btuh

				· ·	ics shown in the	Hydronic Heating Entering Air 70°F DB										
		lydronic Heati	ng Entering A													
EWT (°F)	GPM	WPD (PSI)	WPD (FT)	Capacity (BTUH)	kW	LAT (°F)										
	2.25	1.0	2.3	8900	0.11	81.8										
90	3.38	3.2	7.5	9600	0.13	82.6										
	4.50	6.2	14.3	9900	0.16	83.2										
	2.25	1.0	2.3	11100	0.12	84.7										
95	3.38	3.2	7.4	11900	0.13	85.7										
	4.50	6.2	14.3	12400	0.16	86.4										
	2.25	1.0	2.3	13300	0.12	87.5										
100	3.38	3.2	7.4	14200	0.14	88.8										
	4.50	6.1	14.2	14800	0.16	89.6										
	2.25	1.0	2.2	15500	0.12	90.4										
105	3.38	3.2	7.4	16600	0.14	91.9										
	4.50	6.1	14.2	17300	0.17	92.8										
	2.25	1.0	2.2	17700	0.13	93.3										
110	3.38	3.2	7.4	19000	0.14	95.0										
	4.50	6.1	14.1	19700	0.17	96.1										
	2.25	0.9	2.2	19900	0.13	96.3										
115	3.38	3.2	7.3	21300	0.15	98.1										
	4.50	6.1	14.0	22200	0.17	99.3										
	2.25	0.9	2.2	22100	0.13	99.2										
120	3.38	3.2	7.3	23700	0.15	101.3										
	4.50	6.0	13.9	24700	0.18	102.5										

Performance Data – TSL24 Hybrid

800 CFM Nominal Airflow

Performance capacities shown in thousands of Btuh

	Performance capacities snown in thousands of Btun										
	ŀ	lydronic Heati	ng Entering A								
EWT (°F)	GPM	WPD (PSI)	WPD (FT)	Capacity (BTUH)	kW	LAT (°F)					
	3.00	1.2	2.8	11100	0.10	83.0					
90	4.50	3.0	6.9	12200	0.12	84.3					
	6.00	5.4	12.4	13000	0.14	85.2					
	3.00	1.2	2.8	13800	0.10	86.2					
95	4.50	3.0	6.9	15200	0.12	87.8					
	6.00	5.3	12.3	16200	0.15	88.9					
	3.00	1.2	2.8	16500	0.10	89.4					
100	4.50	3.0	6.9	18200	0.12	91.3					
	6.00	5.3	12.3	19400	0.15	92.7					
	3.00	1.2	2.7	19200	0.11	92.6					
105	4.50	3.0	6.9	21200	0.12	94.8					
	6.00	5.3	12.2	22600	0.15	96.4					
	3.00	1.2	2.7	22000	0.11	95.8					
110	4.50	3.0	6.8	24200	0.12	98.3					
	6.00	5.3	12.2	25900	0.15	100.1					
	3.00	1.2	2.7	24700	0.11	99.0					
115	4.50	3.0	6.8	27200	0.13	101.8					
	6.00	5.3	12.2	29000	0.15	103.8					
	3.00	1.2	2.7	27500	0.11	102.2					
120	4.50	3.0	6.8	30300	0.13	105.3					
	6.00	5.3	12.1	32200	0.16	107.5					

Performance Data – TSL30 Hybrid

1,000 CFM Nominal Airflow

Performance capacities shown in thousands of Btuh

	Performance capacities shown in thousands of Btuh Hydronic Heating Entering Air 70°F DB										
	ŀ	lydronic Heati	ng Entering A	Air 70°F DB							
EWT (°F)	GPM	WPD (PSI)	WPD (FT)	Capacity (BTUH)	kW	LAT (°F)					
	3.75	2.1	4.8	13500	0.17	82.5					
90	5.63	4.5	10.4	15300	0.19	84.2					
	7.50	8.9	20.5	15700	0.26	85.5					
	3.75	2.1	4.8	16800	0.17	85.5					
95	5.63	4.5	10.3	19100	0.20	87.7					
	7.50	8.8	20.4	19600	0.27	88.1					
	3.75	2.1	4.8	20100	0.18	88.6					
100	5.63	4.5	10.3	23000	0.20	91.2					
	7.50	8.8	20.3	23500	0.27	91.7					
	3.75	2.1	4.8	23400	0.18	91.7					
105	5.63	4.4	10.3	26800	0.21	94.7					
	7.50	8.7	20.2	27400	0.28	95.3					
	3.75	2.1	4.8	26700	0.19	94.7					
110	5.63	4.4	10.2	30600	0.21	98.2					
	7.50	8.7	20.1	31300	0.28	98.8					
	3.75	2.1	4.8	30000	0.19	97.8					
115	5.63	4.4	10.2	34300	0.22	101.7					
	7.50	8.7	20.0	35100	0.28	102.4					
	3.75	2.1	4.8	33400	0.19	100.9					
120	5.63	4.4	10.2	38100	0.22	105.2					
	7.50	8.6	19.9	39000	0.29	105.9					

Performance Data – TSL36 Hybrid

1,200 CFM Nominal Airflow

Performance capacities shown in thousands of Btuh

	Performance capacities snown in thousands of Btun										
	F	lydronic Heati	ng Entering A	Air 70°F DB							
EWT (°F)	GPM	WPD (PSI)	WPD (FT)	Capacity (BTUH)	kW	LAT (°F)					
	4.50	3.0	6.9	16600	0.26	82.9					
90	6.75	7.1	16.4	18400	0.31	84.2					
	9.00	12.4	28.6	19200	0.40	84.7					
	4.50	3.0	6.9	20700	0.26	85.9					
95	6.75	7.1	16.3	23000	0.32	87.7					
	9.00	12.3	28.4	23900	0.40	88.3					
	4.50	3.0	6.9	24800	0.27	89.0					
100	6.75	7.0	16.3	27500	0.33	91.1					
	9.00	12.2	28.3	28500	0.41	91.9					
	4.50	3.0	6.8	28800	0.27	92.1					
105	6.75	7.0	16.2	32000	0.33	94.6					
	9.00	12.2	28.1	33200	0.42	95.5					
	4.50	2.9	6.8	32800	0.28	95.2					
110	6.75	7.0	16.1	36500	0.34	98.0					
	9.00	12.1	28.0	37800	0.42	99.0					
	4.50	2.9	6.8	36800	0.28	98.3					
115	6.75	6.9	16.0	40900	0.34	101.4					
	9.00	12.0	27.8	42400	0.43	102.5					
	4.50	2.9	6.7	40900	0.29	101.3					
120	6.75	6.9	15.9	45400	0.35	104.8					
	9.00	11.9	27.6	47100	0.43	106.0					

Performance Data - Correction Tables

Airflow Correction Table

Airflow		Coo	ling		Heating		
% of Nominal (Rated) SCFM	nal Total Sensible d) Capacity Capacity		Power	Heat of Rejection	Heating Capacity	Power	Heat of Extraction
70	0.921	0.8	0.969	0.943	0.942	1.077	0.934
75	0.934	0.833	0.974	0.952	0.952	1.062	0.947
80	0.946	0.866	0.979	0.961	0.961	1.048	0.958
85	0.958	0.899	0.985	0.97	0.971	1.035	0.969
90	0.971	0.932	0.99	0.979	0.980	1.023	0.979
95	0.985	0.966	0.995	0.989	0.990	1.011	0.989
100	1.000	1.000	1.000	1.000	1.000	1.000	1.000
105	1.017	1.035	1.005	1.013	1.010	0.989	1.011

Entering Air Correction Table

	Hea	ting	
Entering Air DB°F	Heating Capacity	Power	Heat of Extraction
45	1.107	0.768	1.181
50	1.085	0.814	1.143
55	1.064	0.860	1.108
60	1.043	0.906	1.072
65	1.022	0.952	1.036
68	1.009	0.981	1.015
70	1.000	1.000	1.000
75	0.982	1.050	0.962
80	0.953	1.103	0.921

	Cooling											
Ent. Air	Total	Sensible Capacity-Entering Air Dry Bulb, °F									Heat of	
WB °F	Capacity	65	70	75	80	80.6	85	90	95	Power	Rejection	
45	0.557	*	*	*	*	*	*	*	*	0.986	0.672	
50	0.658	1.100	*	*	*	*	*	*	*	0.989	0.747	
55	0.758	0.861	1.091	*	*	*	*	*	*	0.992	0.821	
60	0.859	0.623	0.854	1.091	1.325	1.383	*	*	*	0.996	0.896	
65	0.960		0.617	0.857	1.093	1.151	1.326	*	*	0.999	0.970	
66.2	0.984		0.561	0.801	1.037	1.095	1.270	1.521	*	1.000	0.988	
67	1.000		0.523	0.763	1.000	1.058	1.232	1.482	*	1.000	1.000	
70	1.060			0.623	0.861	0.919	1.090	1.339	1.563	1.002	1.045	
75	1.161				0.629	0.686	0.854	1.101	1.318	1.005	1.119	

 $^{^*}$ = Sensible capacity equals total capacity AHRI/ISO/ASHRAE 13256-1 uses entering air conditions of Cooling - 80.6°F DB/66.2°F WB, and Heating - 68°F DB/59°F WB entering air temperature

Motorized Water Valve

	N.O./N.C. N Water Valve		Modulating Valve			
Unit Size	Cv	Max Close-Off Pressure	Cv	Max Close-Off Pressure		
	gpm/psig	psig	gpm/psig	psig		
09	4.9	125	3.0	200		
12	4.9	125	3.0	200		
15	10.3	125	4.7	200		
18	10.3	125	4.7	200		
24	10.3	125	7.4	200		
30	10.3	125	7.4	200		
36	10.3	125	7.4	200		

Antifreeze Correction Table

				Cooling		Heatir	าต	
EWT	Antifreeze Type	Antifreeze %	Total Cap	Sensible Cap	Watts	Total Cap	Watts	WPD
	Water	0%	1	1	1	1	1	1
		5%	0.998	0.998	1.002	0.996	0.999	1.025
		10%	0.996	0.996	1.003	0.991	0.997	1.048
		15%	0.994	0.994	1.005	0.987	0.996	1.098
		20%	0.991	0.991	1.006	0.982	0.994	1.142
	=" .	25%	0.986	0.986	1.009	0.972	0.991	1.207
	Ethanol	30%	0.981	0.981	1.012	0.962	0.988	1.265
		35%	0.977	0.977	1.015	0.953	0.985	1.312
		40%	0.972	0.972	1.018	0.943	0.982	1.37
		45%	0.966	0.966	1.023	0.931	0.978	1.431
	Ethylene Glycol	50%	0.959	0.959	1.027	0.918	0.974	1.494
		5%	0.998	0.998	1.002	0.996	0.999	1.021
		10%	0.996	0.996	1.003	0.991	0.997	1.04
	Ethylene Glycol	15%	0.994	0.994	1.004	0.987	0.996	1.079
		20%	0.991	0.991	1.005	0.982	0.995	1.114
	Ethydana Chraal	25%	0.988	0.988	1.008	0.976	0.993	1.146
	Etnylene Glycol	30%	0.985	0.985	1.01	0.969	0.99	1 1 1 1
		35%	0.982	0.982	1.012	0.963	0.988	1.208
		40%	0.979	0.979	1.014	0.956	0.997 1.048 0.996 1.098 0.994 1.142 0.991 1.207 0.988 1.265 0.985 1.312 0.978 1.431 0.974 1.494 0.999 1.021 0.997 1.04 0.996 1.079 0.995 1.114 0.993 1.446 0.99 1.775 0.988 1.208 0.986 1.243 0.984 1.278 0.982 1.314 0.998 1.039 0.996 1.075 0.994 1.116 0.991 1.154 0.989 1.189 0.986 1.221 0.981 1.31 0.975 1.398 0.997 1.065 0.994 1.119 0.991 1.152 0.988 1.227	1.243
		45%	0.976	0.976	1.016	0.95	0.984	1.278
90		50%	0.972	0.972	1.018	0.943	0.982	1.314
		5%	0.997	0.997	1.002	0.993	0.998	1.039
		10%	0.993	0.993	1.004	0.986	0.996	1.075
		15%	0.99	0.99	1.007	0.979	0.994	1.116
		20%	0.986	0.986	1.009	0.972	0.991	1.154
	Methanol	25%	0.982	0.982	1.012	0.964	0.989	1.189
	Wethanoi	30%	0.978	0.978	1.014	0.955	0.986	1.221
		35%	0.974	0.974	1.017	0.947	0.984	1.267
		40%	0.97	0.97	1.02	0.939	0.981	1.31
		45%	0.966	0.966	1.023	0.93	0.978	1.353
		50%	0.961	0.961	1.026	0.92	0.975	1.398
		5%	0.995	0.995	1.003	0.99	0.997	1.065
		10%	0.99	0.99	1.006	0.98	0.994	1.119
		15%	0.986	0.986	1.009	0.971	0.991	0.999 1.025 0.997 1.048 0.996 1.098 0.994 1.142 0.991 1.207 0.988 1.265 0.985 1.312 0.982 1.37 0.978 1.431 0.974 1.494 0.999 1.021 0.997 1.04 0.996 1.079 0.995 1.114 0.993 1.146 0.99 1.75 0.988 1.208 0.986 1.243 0.984 1.278 0.982 1.314 0.998 1.039 0.996 1.075 0.994 1.116 0.994 1.189 0.984 1.221 0.984 1.227 0.994 1.119 0.997 1.065 0.994 1.119 0.997 1.065 0.994 1.119 0.994
		35% 0.982 0.982 1.012 0.963 0.98 40% 0.979 0.979 1.014 0.956 0.98 45% 0.976 0.976 1.016 0.95 0.98 50% 0.972 0.972 1.018 0.943 0.98 5% 0.997 0.997 1.002 0.993 0.99 10% 0.993 0.993 1.004 0.986 0.98 15% 0.99 0.99 1.007 0.979 0.92 20% 0.986 0.986 1.009 0.972 0.99 25% 0.982 0.982 1.012 0.964 0.98 30% 0.978 0.978 1.014 0.955 0.98 35% 0.974 0.974 1.017 0.947 0.98 45% 0.966 0.966 1.023 0.93 0.98 50% 0.995 0.995 1.003 0.99 0.99 10% 0.99 </td <td>0.988</td> <td>1.182</td>	0.988	1.182				
	Propylone Clycel	25%	0.978	0.978	1.014	0.956	0.986	1.227
	Propylene Glycol	30%	0.975	0.975	1.016	0.95	0.984	1.267
		35%	0.972	0.972	1.018	0.944	0.982	1.312
		40%	0.969	0.969	1.02	0.938	0.98	1.356
		45%	0.965	0.965	1.023	0.929	0.977	1.402
		50%	0.96	0.96	1.026	0.919	0.974	1.45

Table Continued on Next Page

Antifreeze Correction Table

Table Continued from Previous Page

EVA/E	Austina and Toma	A 4:5 0/		Cooling		Heatir	ng	WDD
EWT	Antifreeze Type	Antifreeze %	Total Cap	Sensible Cap	Watts	Total Cap	Watts	WPD
	Water	0%	1	1	1	1	1	1
		5%	0.991	0.991	1.006	0.981	0.994	1.14
	Ethanol	10%	0.981	0.981	1.012	0.961	0.988	1.242
		15%	0.973	0.973	1.018	0.944	0.983	1.295
	Ethanol	20%	0.964	0.964	1.024	0.927	0.977	1.343
	Ethanol	25%	0.959	0.959	1.028	0.917	0.974	1.363
	Lularioi	30%	0.954	0.954	1.031	0.907	0.97	1.383
		35%	0.949	0.949	1.035	0.897	0.967	
		40%	0.944	0.944	1.038	0.887	0.964	1.523
		45%	0.94	0.94	1.041	0.88	0.962	1.58
		50%	0.936	0.936	1.043	0.872	0.959	
		5%	0.997	0.997	1.002	0.993	0.998	
		10%	0.993	0.993	1.004	0.986	0.996	1.075
	Ethylene Glycol	15%	0.99	0.99	1.006	0.98	0.994	
		20%	0.987	0.987	1.008	0.973	0.992	
	Ethylene Glycol	25%	0.983	0.983	1.011	0.966	0.99	1.195
	Linylene Grycol	30%	0.979	0.979	1.013	0.958	0.987	1 1.14 1.242 1.295 1.343 1.363 1.383 1.468 1.523 1.58 1.639 1.04 1.075 1.122 1.163
		35%	0.976	0.976	1.016	0.951	0.985	
		40%	0.972	0.972	1.018	0.943	0.982	1.324
		45%	0.969	0.969	1.021	0.937	0.98	
30		50%	0.966	0.966	1.023	0.93	0.978	
		5%	0.995	0.995	1.004	0.989	0.997	
		10%	0.989	0.989	1.007	0.978	0.993	1.127
		15%	0.984	0.984	1.011	0.968	0.99	1.164
		20%	0.979	0.979	1.014	0.957	0.986	
	Methanol	25%	0.975	0.975	1.017	0.949	0.984	1.216
	Wethanol	30%	0.971	0.971	1.019	0.941	0.981	
		35%	0.967	0.967	1.022	0.933	0.979	
	Methanol	40%	0.963	0.963	1.025	0.924	0.976	
		45%	0.959	0.959	1.028	0.917	0.974	
		50%	0.955	0.955	1.03	0.91	0.971	
		5%	0.995	0.995	1.004	0.989	0.997	
		10%	0.989	0.989	1.007	0.978	0.993	
	Methanol Propylene Glycol	15%	0.985	0.985	1.01	0.968	0.99	
		20%	0.98	0.98	1.013	0.958	0.987	
	Pronylene Glycol	25%	0.974	0.974	1.017	0.947	0.983	
	Tropylette Giyeet	30%	0.968	0.968	1.021	0.935	0.979	
		35%	0.963	0.963	1.025	0.924	0.976	
		40%	0.957	0.957	1.029	0.913	0.972	
		45%	0.949	0.949	1.034	0.898	0.967	
		50%	0.941	0.941	1.039	0.882	0.962	1.816

Hybrid Performance Data – Correction Tables

Blower Motor Correction Table

Size	Hydronic Coil Static
TSL09	0.1
TSL12	0.1
TSL15	0.1
TSL18	0.15
TSL24	0.15
TSL30	0.15
TSL36	0.2

Entering Air Correction Table

Entering Air DB (°F)	Heating Capacity
45	1.65
50	1.52
55	1.39
60	1.25
65	1.12
68	1.04
70	1
75	0.85
80	0.72

Airflow Correction Table

% of Nominal (rated) SCFM	Heating Capacity
70	0.8
75	0.8
80	0.9
85	0.9
90	0.9
95	1.0
100	1.0
105	1.0

			E	External Sta	ntic Pressur	e (in. wg)				
	Spee	d Tap	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
		RPM	1000	1120	1210	1290	1380			
i.	Low	Power (W)	145	139	132	125	119			
Staf		CFM	350	340	320	290	270			
PSC - High Static		RPM					1520	1570	1610	1650
포	Medium	Power (W)					162	151	139	127
SC		CFM		Operatio	n not recon	nmended	430	390	340	280
Δ.		RPM								1710
	High	Power (W)								151
		CFM								390
	Spee	d Tap	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
		RPM	980	1080	1170	1260	1360			
	1	Power (W)	47	51	54	58	62	Operation	0.7 tion not recomme	nmended
ECM - Constant Torque		CFM	340	320	290	270	240			
		RPM	1060	1160	1230	1320	1390	1500		
ant	2	Power (W)	58	62	66	70	75	79		
nst		CFM	380	360	330	310	280	260		
ပိ		RPM		1230	1310	1390	1440	1530	1590	1650
Σ	3	Power (W)		79	84	88	92	97	101	105
E		CFM		400	380	360	340	320	290	270
		RPM				1470	1480	1550	1630	1680
	4	Power (W)	Operatio	n not recon	nmended	108	113	117	122	126
		CFM				410	390	370	360	340
	CI	FM	0.1	0.2	0.3	0.4	0.5	0.6	360	340
	0.50	RPM	810	950	1100	1230	1370	1490	1560	1640
ant	250	Power (W)	30	38	47	57	67	78	89	101
onst me	200	RPM	900	1050	1180	1300	1410	1520	1590	1660
l - Cons Volume	300	Power (W)	38	48	58	69	81	93	105	118
ECM - Constant Volume	350	RPM	1000	1140	1260	1380	1450	1540	1620	1690
Щ	350	Power (W)	50	62	73	85	98	110	124	137
	400	RPM	1100	1230	1340	1450	1490	1570		
	400	Power (W)	65	79	92	105	119	132		

				External Sta	itic Pressui	e (in. wg)				
	Spee	d Tap	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
		RPM	980	1090	1190					
<u>:</u>	Low	Power (W)	145	139	132		Operation	on not reco	mmended	
PSC - High Static		CFM	350	340	320					
gh		RPM		1290	1360	1440	1470	1540	1590	
투	Medium	Power (W)		197	185	174	162	151	139	
၁၄		CFM		500	480	460	430	390	340	
□		RPM						1590	1630	1680
	High	Power (W)		Оре	ration not	recommend	ded	151	151	151
		CFM						520	470	390
	Spee	d Tap	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
		RPM	1070	1140	1230	1320	1400			
	1	Power (W)	66	70	74	78	82	Operation	n not recon	nmended
ECM - Constant Torque		CFM	410	380	360	330	310			
To.		RPM	1140	1190	1280	1370	1430	1510	1580	
aut	2	Power (W)	54	58	61	65	69	73	77	
nst		CFM	450	420	400	380	360	330	310	
ပိ	3	RPM	1190	1240	1320	1400	1450	1530	1590	1660
Š		Power (W)	79	83	87	91	96	100	104	108
Щ		CFM	480	460	440	420	400	370	350	330
		RPM						1580	1630	1690
	4	Power (W)		Operation	not recon	nmended		137	141	145
		CFM						480	460	440
	CI	FM	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
	200	RPM	890	1040	1170	1300	1400	1500	1570	1660
ECM - Constant Volume	300	Power (W)	38	48	58	69	81	93	105	118
Š	350	RPM	980	1100	1220	1340	1430	1520	1590	1670
ant	300	Power (W)	50	62	73	85	98	110	124	137
nst	400	RPM	1060	1170	1280	1380	1450	1540		
ပိ	400	Power (W)	65	79	92	105	119	132		
Σ	450	RPM	1140	1230	1330	1430				
EC	430	Power (W)	87	101	115	128	Op	peration no	t recommen	ided
	500	RPM	1220							
	500	Power (W)	111							

			E	xternal Sta	tic Pressure	e (in. wg)				
	Spee	ed Tap	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
		RPM	860	890	900	950	990	1050		
္ပ	Low	Power (W)	219	208	197	186	175	164		
PSC - High Static		CFM	700	660	610	570	520	480		
gh		RPM			960	1010	1030	1070	1590	
투	Medium	Power (W)			225	212	200	187	139	
၁၄		CFM			710	670	610	540	340	
<u> </u>		RPM					1080	1110	1140	1680
	High	Power (W)		Operatio	n not recor	nmended	248	233	219	151
		CFM					720	630	530	390
	Spee	ed Tap	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
		RPM	720	770	810	870				
	1	Power (W)	66	70	74	79				
		CFM	560	520	480	430		0		
Φ		770	810	850	910	960	Operation	Operation not recommen		
nbu	2	Power (W)	79	83	87	92	98			
ιξ		CFM	610	570	540	500	450			
tan		RPM	820	860	890	930	990	1040		
suo	4	Power (W)	95	101	104	110	114	121		
Ÿ		CFM	660	630	600	540	500	460		
ECM - Constant Torque		RPM	850	900	910	970	1010	1070	1120	
-		Power (W)	107	111	117	123	128	134	141	
		CFM	690	670	630	600	560	520	470	
		RPM			960	1010	1050	1100	1150	1210
	5	Power (W)			142	147	153	159	166	167
		CFM			710	670	640	600	560	510
	C	FM	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
စ္	450	RPM	620	700	790	880	960	1040	1110	1190
In In	450	Power (W)	39	53	67	82	96	110	124	139
ş	500	RPM	670	750	830	910	990	1060	1130	1210
tani	500	Power (W)	50	64	78	93	107	121	135	150
ons	600	RPM	760	840	890	970	1030	1100	1160	1230
ECM - Constant Volume	600	Power (W)	83	97	111	125	139	153	167	181
C	650	RPM	810	880	920	1000	1050	1120	1180	1250
ű	030	Power (W)	104	118	133	147	162	176	191	205
	700	RPM	860	930	960	1030	1070	1140	1200	1260
	700	Power (W)	125	140	155	170	185	199	214	229

				-Aleinai Sta	itic Pressur	e (in. wg)				
	Spee	d Tap	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
		RPM			1030	1090	1110	1120	1130	
္မ	Low	Power (W)			246	235	223	212	200	
Staf		CFM			760	710	650	580	510	
gh (RPM				1130	1130	1140	1140	
후	Medium	Power (W)				251	239	228	216	
PSC - High Static		CFM				750	680	610	530	
		RPM					1180	1180	1170	
	High	Power (W)	Op	eration not	recommen	ded	282	270	258	
		CFM					740	660	570	
	Spee	d Tap	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
		RPM	750	800	850	880				
	1	Power (W)	73	77	82	87	Op	eration not	t recommen	ded
	CFM		590	550	500	450				
e [RPM	820	860	910	960	990	1030		
) rg	2	Power (W)	95	99	105	110	115	119		
H		CFM	660	630	590	540	500	460		
star	3	RPM	890	930	960	1040	1060	1090	1130	1200
ő		Power (W)	123	127	132	138	144	149	154	158
ECM - Constant Torque		CFM	730	700	670	640	590	550	520	490
Si		RPM		970	1000	1080	1110	1140	1170	1220
	4	Power (W)		148	152	158	164	170	176	172
		CFM		750	720	690	660	610	570	520
		RPM			•			1230	1180	1180
	5	Power (W)		Operation	not recom	mended		217	182	154
		CFM						730	580	470
0	CI	FM .	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
Ĕ	=00	RPM	660	750	850	920	990	1060	1120	1200
ECM - Constant Volume	500	Power (W)	52	67	81	96	110	125	139	153
Ę	000	RPM	760	840	920	1010	1070	1130	1200	1270
ısta	600	Power (W)	88	102	116	130	144	158	172	186
ပိ	700	RPM	860	930	980	1090	1150	1210	1280	1340
Ξ	700	Power (W)	138	153	167	182	196	211	225	240
EC	900	RPM	960	1010	1050	1170	1220	1280	1360	1400
	800	Power (W)	199	216	232	249	265	282	298	315

All data is presented as lowest of nameplate voltage. All data is shown wet coil with clean 1" filter. All data is ran at 80°F DB and 67°F WB. CFM Tolerance is 7% RPM/Watt Tolerance 10%

			E	External Sta	itic Pressu	re (in. wg)				
	Spee	d Tap	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
		RPM				900	940	980	1020	1070
<u>:</u>	Low	Power (W)				311	295	279	263	246
Stat		CFM				940	880	810	720	630
gh		RPM					980	1010	1040	1080
투	Medium	Power (W)					325	305	285	265
PSC - High Static		CFM	0.5	aration not	**********	dod	980	900	800	690
<u> </u>		RPM	Op	eration not	recommen	ueu				1110
	High	Power (W)								343
		CFM								890
	Spee	d Tap	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
		RPM	680	720	770	820	870	930		
	1	Power (W)	110	117	123	131	138	146		
		CFM	840	800	760	720	670	630		
e		RPM	730	770	810	860	910	960	1020	1080
) rg	2	Power (W)	145	153	160	167	175	183	192	199
i i		CFM	940	900	860	830	790	750	710	670
ECM - Constant Torque		RPM				900	950	1000	1050	1100
Ö	3	Power (W)				212	219	227	236	246
<u> </u>		CFM				940	900	870	830	790
		RPM							1080	1120
	4	Power (W)							285	294
		CFM	Operation not recommended						940	900
		RPM		Ope	ration not	recomment	ieu			
	5	Power (W)								
		CFM								
	CI	FM	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
0	600	RPM	560	630	710	780	840	920	990	1070
ECM - Constant Volume	000	Power (W)	52	70	87	104	122	139	157	174
9	700	RPM	610	680	750	820	880	950	1020	1080
ant	700	Power (W)	77	96	115	134	153	172	191	210
nst	800	RPM	660	720	790	850	910	980	1040	1100
ပိ	000	Power (W)	102	122	143	164	184	205	226	246
Σ	900	RPM	710	770	830	890	950	1010	1070	1120
E	300	Power (W)	134	155	176	197	218	239	261	282
	950	RPM	740	790	850	900	970	1020	1080	1120
	330	Power (W)	172	193	214	234	255	276	296	317

All data is presented as lowest of nameplate voltage.

All data is shown wet coil with clean 1" filter. All data is ran at 80°F DB and 67°F WB. CFM Tolerance is 7%

RPM/Watt Tolerance 10%

			I	External Sta	itic Pressur	e (in. wg)				
	Spee	d Tap	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
		RPM	800	840	880	920	950	980		
i:	Low	Power (W)	360	344	328	311	295	279		
Staf		CFM	1020	1010	980	940	880	810		
gh		RPM	870	910	940	980	1000	1020	1040	
후	Medium	Power (W)	405	385	365	345	325	305	285	
PSC - High Static		CFM	1130	1120	1080	1040	980	900	800	
ă.		RPM						1120	1120	1130
	High	Power (W)		Operation	not recom	mended		395	369	343
		CFM						1120	1010	890
	Spee	d Tap	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
		RPM	810	840	870	910	950	1000	1050	1090
	1	Power (W)	177	185	194	203	212	221	229	236
		CFM	1040	1000	960	920	880	850	810	770
<u>e</u>		RPM	850	890	920	960	990	1040	1090	1130
할	2	Power (W)	220	229	237	247	257	266	275	283
Į t		CFM	1110	1080	1050	1010	970	940	910	880
ECM - Constant Torque		RPM			,		1070	1110	1150	1180
Si O	3	Power (W)					351	363	373	384
٥ -		CFM					1140	1100	1070	1040
S		RPM							1190	1220
l "	4	Power (W)	Ор	eration not	recommen	ded			442	451
		CFM						1170	1140	
		RPM								
	5	Power (W)								
		CFM								
	С	FM	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
ECM - Constant Volume		RPM	620	690	750	810	890	960	1030	1080
Volt	750	Power (W)	85	109	133	157	182	206	230	254
in in	0==	RPM	700	760	820	880	950	1010	1070	1130
nsta	875	Power (W)	131	157	183	209	235	261	287	313
Co	4000	RPM	780	840	890	950	1010	1070	1120	1170
ž	1000	Power (W)	191	219	247	275	303	331	359	387
EC	4450	RPM	880	930	980	1040	1080	1130	1180	1220
	1150	Power (W)	284	310	336	361	387	413	438	464

				External Sta	itic Pressur	e (in. wg)				
	Spee	d Tap	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
U		RPM	730	770	820					
Ë	Low	Power (W)	378	358	338					
Staf		CFM	930	920	900					
gh		RPM	910	950	970	1000	1020	1040		
투	Medium	Power (W)	485	459	432	405	379	352		
PSC - High Static		CFM	1210	1190	1150	1100	1030	950		
Δ.		RPM			1100	1120	1120	1130	1130	1130
	High	Power (W)			529	501	472	444	415	386
		CFM			1370	1310	1230	1130	1020	900
	Spee	d Tap	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
		RPM	830	860	890	930	970	1020		
	1	Power (W)	193	201	211	221	231	239		
		CFM	1080	1050	1020	980	950	910		
e	2	RPM	920	950	970	1010	1060	1090	1140	1170
p b		Power (W)	265	273	282	294	305	316	326	335
Ħ Ħ		CFM	1220	1190	1150	1130	1100	1060	1030	1000
stan		RPM	1020	1040	1070	1110	1140	1180	1220	1250
ši o	3	Power (W)	361	369	377	387	401	414	426	428
ECM - Constant Torque		CFM	1370	1340	1310	1290	1260	1230	1200	1160
S		RPM	940	970	1010	1050	1070	1150		
i "	4	Power (W)	315	322	332	341	351	430		
		CFM	1240	1230	1200	1170	1140	1200		
		RPM								
	5	Power (W)								
		CFM								
4	С	FM	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
Ĕ	000	RPM	710	760	820	880	950	1020	1070	1130
ECM - Constant Volume	900	Power (W)	132	157	183	208	234	260	285	311
ıt	4050	RPM	810	860	910	970	1030	1090	1150	1200
ısta	1050	Power (W)	215	244	272	301	329	358	386	415
Cor	4200	RPM	910	950	1000	1050	1110	1160	1220	1260
<u> </u>	1200	Power (W)	299	331	362	393	425	456	487	519
ECI	4250	RPM	1000	1050	1090	1140	1190	1240	1290	1330
	1350	Power (W)	458	483	509	534	560	585	611	636
		Power (W)		483	509	534	560	585	611	636

Performance Data - Ducted ECM-CV

All data wet coil clean filter.

Tranquility		Cooling	g Mode	Heating	g Mode	Dehum	nid Mode	Continuous
Model	Setting	Fan Motor Stage 1	Fan Motor Stage 2*	Fan Motor Stage 1	Fan Motor Stage 2*	Fan Motor Stage 1	Fan Motor Stage 2*	Fan Only Mode
	Default	250	350	250	350	250	300	250
TSL09	Min	250	250	250	250	250	250	250
	Max	400	400	400	400	400	400	400
	Default	300	400	300	400	300	350	300
TSL12	Min	300	300	300	300	300	300	300
	Max	500	500	500	500	500	500	500
	Default	500	600	500	600	500	500	500
TSL15	Min	500	500	500	500	500	500	500
	Max	700	700	700	700	700	700	700
	Default	600	700	600	700	600	600	500
TSL18	Min	600	600	600	600	500	500	500
	Max	800	800	800	800	800	800	800
	Default	650	850	650	850	650	650	600
TSL24	Min	650	650	650	650	600	600	600
	Max	950	950	950	950	950	950	950
	Default	850	1000	900	1000	850	850	700
TSL30	Min	850	850	900	900	800	800	700
	Max	1100	1100	1100	1100	900	1100	1100
	Default	900	1200	900	1250	900	900	900
TSL36	Min	900	900	900	900	900	900	900
	Max	1250	1250	1350	1350	1250	1250	1250

All units AHRI/ISO/ASHRAE 13256-1 rated on CFM shown on performance data page. If unit is dual voltage rated, then the airflow is rated at the lowest voltage, i.e. 208V for 208-230V units. Shipped on default settings. C=Cooling; H=Heating; D=Dehumidification

Change from default setting with Service tool (ACDU03C) or Communicating thermostat (ATC32U03C).

Airflow is controlled within 7%, up to the max ESP.

TSL15-36 ramp default is 30 sec.

* - Stage 2 ECM CV motor speed is engaged with a thermostat Y2 call. TSL Series is only available with singe-stage compressors.

Physical Data

Model	09	12	15	18	24	30	36	
Compressor (1 Each)		Ro	tary		Scroll			
Factory Charge HFC-410A (oz) [kg]	35 [.99]	35 [.99]	43 [1.22]	53 [1.50]	71 [2.01]	66 [1.87]	75 [2.13]	
Motor & Blower								
208-230V PSC (HP) [W]	1/10 [75]	1/10 [75]	1/3 [249]	1/3 [249]	1/3 [249]	1/3 [249]	3/4 [560]	
265V PSC (HP) [W]	1/10 [75]	1/10 [75]	1/3 [249]	1/3 [249]	1/2 [373]	1/2 [373]	3/4 [560]	
ECM Constant Volume (HP) [W]	1/8 [93]	1/8 [93]	1/3 [249]	1/3 [249]	1/3 [249]	1/2 [373]	3/4 [560]	
ECM Constant Torque (HP) [W]	1/4 [186]	1/4 [186]	1/3 [249]	1/3 [249]	1/2 [373]	1/2 [373]	3/4 [560]	
Blower Wheel Size (diam x w) - (in) [mm]	6.75 x 7.25	[165 x 184]	9.5 x 7.12	[241 x 180]	10.63 x 8.0 [270 x 203]			
Chassis Air Coil								
Air Coil Dimensions (h x w) - (in) [mm]	28 x 12.625 [711 x 321]		28 x 14 [711 x 356]		30 x 18 [762 x 457]		57]	
Return Air Filter Dimensions (h x w) - (in) [mm]	30 x 14 [7	'62 x 356]	30 x 16 [7	30 x 16 [762 x 406]		32 x 20 [813 x 508]		
Coax Volume (Gallons) [Liters]	0.26	[.98]	0.36	[1.4]		0.60 [2.3]		
Hose Size (in)	1/	/2	3.	/4		1		
Weight								
Chassis - (lbs) [kg]	110 [50]	117 [53]	123 [56]	125 [57]	186 [84]	190 [86]	192 [87]	
65" Cabinet - (lbs) [kg]	95	[43]	108	[49]	142 [64]			

 $Unit\ wiring\ diagrams\ available\ at\ www.climatemaster.com.\ Select\ 'Commercial\ Professional\ ',\ '\ Literature\ ',\ '\ Wiring\ Diagrams'.$

Unit Maximum Water Working Pressure									
Options	Max Pressure PSIG [kPa]								
Base Unit (Hoses)	400 [2,757]								
Internal Secondary Pump (ISP)	200 [1.378]								
Internal Motorized Water Valve (MWV)	300 [2,068]								
Internal Modulating Valve	300 [2,068]								
Internal Auto Flow Valve	400 [2,757]								

Use the lowest maximum pressure rating when multiple options are combined.

^{*} Units with MWV have 300 [2068] High Pressure Water switch - 250 [1723] Auto Reset

Hybrid Physical Data

Model	09	12	15	18	24	30	36
Compressor (1 Each)		Ro	tary			Scroll	
Factory Charge HFC-410A (oz) [kg]	35 [.99] 35 [.99]		43 [1.22]	53 [1.50]	71 [2.01]	71 [2.01] 66 [1.87]	
Motor & Blower							
ECM Constant Volume (HP) [W]	1/8 [93]	1/4 [186]	1/3 [249]	1/3 [249]	1/2 [373]	3/4 [560]	3/4 [560]
ECM Constant Torque (HP) [W]	1/4 [186]	1/4 [186]	1/3 [249]	1/3 [249]	1/2 [373]	1/2 [373]	3/4 [560]
Blower Wheel Size (diam x w) - (in) [mm]	6.75 x 7.25	[165 x 184]	9.5 x 7.12	[241 x 180]	10.6	3 x 8.0 [270 x	203]
Chassis Air Coil							
Refrigerant Air Coil Dimensions (h x w) - (in) [mm]	28 x 12.625	[711 x 321]	28 x 14 [711 x 356]		30 x 18 [762 x 457]		
Hydronic Coil Dimensions (h x w) - (in) [mm]	28 x 12.625	[711 x 321]	28 x 14 [711 x 356]		30	57]	
Return Air Filter Dimensions (h x w) - (in) [mm]	30 x 14 [7	762 x 356]	30 x 16 [762 x 406]		32 x 20 [813 x 508]		08]
Coax Volume (Gallons) [Liters]	0.26	[.98]	0.36 [1.4]		0.60 [2.3]		
Hydronic Coil Volume (Gallons) [Liters]	0.08	[0.30]	0.61	[2.31]		0.77 [2.91]	
Hose Size (in)	1	/2	3	3/4		1	
Weight							
Chassis - (lbs) [kg]	132	[60]	181	[83]		228 [104]	
65" Cabinet - (lbs) [kg]	116	[53]	128	[58]		139 [63]	
80" Cabinet - (lbs) [kg]	129	[59]	142 [65]		156 [71]		
88" Cabinet - (lbs) [kg]	137	[63]	151	[69]	166 [76]		

Unit wiring diagrams available at www.climatemaster.com. Select 'Commercial Professional', 'Literature', 'Wiring Diagrams'.

Unit Maximum Water Working Pressure	
Options	Max Pressure PSIG [kPa]
Base Unit	400 [2,757]
Hydronic Coil	625 [4,309]
Internal Secondary Pump (ISP)	200 [1,378]
Internal Motorized Water Valve (MWV)	300 [2,068]
Internal Modulating Valve	300 [2,068]
Internal Auto Flow Valve	400 [2,757]

Use the lowest maximum pressure rating when multiple options are combined. * Units with MWV have 300 [2068] High Pressure Water switch - 250 [1723] Auto Reset

Electrical Data – PSC Motor (208/230V) and (265V)

PSC Motor (208/230V)

Model#	Voltage Code	Comp	ressor	Blower Motor	Pump Option	Total Unit	Min Circuit	Max Fuse
	"G"	RLA	LRA	FLA	FLA	FLA	Amps	Amps
TSL09		3.7	22	0.8	0.0	4.5	5.5	15
13203		5.7	22	0.0	0.6	5.2	6.1	15
TSL12		4.6	30	0.8	0.0	5.5	6.6	15
13612		4.0	30	0.6	0.6	6.1	7.3	15
TSL15		5.6	29	1.6	0.0	7.2	8.6	15
13615		5.0	23	1.0	0.6	7.8	9.2	15
TSL18	208/230-60-1	6.6	33	1.6	0.0	8.2	9.9	15
ISLIO	200/230-00-1	0.0		1.0	0.6	8.8	10.5	15
TSL24		12.8	58.3	2.7	0.0	15.5	18.7	30
13124		12.0	36.3	2.1	0.6	16.1	19.3	30
TSL30		12.8	64	2.7	0.0	15.5	18.7	30
13130		12.0	04	2.1	0.6	16.1	19.3	30
TSL36	14.1	1/1	14.1 77	3.0	0.0	17.1	20.6	30
13136		14.1		3.0	0.6	17.7	21.3	35

PSC Motor (265V)

Model #	Voltage Code	Comp	ressor	Blower Motor	Pump Option	Total Unit	Min Circuit	Max Fuse
	"E"	RLA	LRA	FLA	FLA	FLA	Amps	Amps
TSL09		3.5	22	0.8	0.0	4.3	5.2	15
13209		3.5	22	0.6	0.6	5.0	5.8	15
TSL12		3.9	23	0.8	0.0	4.7	5.7	15
13612			23	0.0	0.6	5.3	6.3	15
TSL15		5.0	28	1.6	0.0	6.6	7.8	15
13215		5.0	20	1.0	0.6	7.2	8.5	15
TSL18	265-60-1	5.6	28	1.6	0.0	7.2	8.6	15
ISLIO	203-00-1	5.0	20	1.0	0.6	7.8	9.2	15
TSL24		9.6	54	2.0	0.0	11.6	14.0	20
13L24		9.0	54	2.0	0.6	12.2	14.6	20
TSL30		10.9	60	2.0	0.0	12.9	15.6	25
13L30		10.9	00	2.0	0.6	13.5	16.3	25
TSL36	12	12.2	72	0.0	0.0	15.1	18.2	30
13236		12.2	12	2.9	0.6	15.7	18.8	30

Unit wiring diagrams available at www.climatemaster.com. Select 'Commercial Professional', 'Literature', 'Wiring Diagrams'.

Electrical Data – ECM-CV Motor (208/230V) and (265V)

ECM-CV Motor (208/230V)

Model #	Voltage Code	Comp	ressor	Blower Motor	Pump Option	Total Unit FLA	Min Circuit	Max Fuse
	G	RLA	LRA	FLA	FLA	FLA	Amps	Amps
TSL09		3.7	22	1.5	0.0	5.2	6.1	15
13203		5.7	22	1.5	0.6	5.8	6.8	15
TSL12		4.6	30	1.5	0.0	6.1	7.3	15
ISLIZ		4.0	30	1.5	0.6	6.8	7.9	15
TSL15		5.6	29	2.6	0.0	8.2	9.6	15
ISLIS		5.0	29	2.0	0.6	8.8	10.2	15
TSL18	208/230-60-1	6.6	33	2.6	0.0	9.2	10.9	15
ISLIO	200/230-00-1	0.0		2.0	0.6	9.8	11.5	15
TSL24		12.8	58.3	2.6	0.0	15.4	18.6	30
13L24		12.0	36.3	2.0	0.6	16.0	19.2	30
TSL30		10.0	64	3.9	0.0	16.7	19.9	30
13L30		12.8	04	3.9	0.6	17.3	20.5	30
TSL36		1.1.1	77	5.2	0.0	19.3	22.8	35
13L36		14.1	11	5.2	0.6	19.9	23.5	35

ECM-CV Motor (265V)

Model#	Voltage Code	Comp	ressor	Blower Motor	Pump Option	Total Unit	Min Circuit	Max Fuse
	"E"	RLA	LRA	FLA	FLA	FLA	Amps	Amps
TSL09		3.5	22	1.4	0.0	4.9	5.8	15
13209		3.5	22	1.4	0.6	5.5	6.4	15
TSL12		3.9	23	1.4	0.0	5.3	6.2	15
ISLIZ			23	1.4	0.6	5.9	6.9	15
TSL15		5.0	28	2.1	0.0	7.1	8.4	15
13113		3.0	20	2.1	0.6	7.7	9.0	15
TSL18	265-60-1	5.6	28	2.1	0.0	7.7	9.1	15
ISLIO	203-00-1	5.0		2.1	0.6	8.3	9.7	15
TSL24		9.6	54	2.1	0.0	11.7	14.1	20
13L24		9.0	54	2.1	0.6	12.3	14.7	20
TSL30		10.9	60	3.2	0.0	14.1	16.8	25
13130		10.9	00	3.2	0.6	14.7	17.5	25
TSL36		12.2	72	4.7	0.0	16.9	20.0	30
13236		12.2	12	4.7	0.6	17.5	20.6	30

Unit wiring diagrams available at www.climatemaster.com. Select 'Commercial Professional', 'Literature', 'Wiring Diagrams'.

Electrical Data – ECM-CT Motor (208/230V) and (265V)

ECM-CT Motor (208/230V)

Model #	Voltage Code		ressor	Blower Motor	Pump Option	Total Unit	Min Circuit	Max Fuse Amps
	J	RLA	LRA	FLA	FLA	ILA	Amps	Allips
TSL09		3.7	22	2.3	0.0	6.0	6.9	15
13203		5.7	22	2.5	0.6	6.6	7.6	15
TSL12		4.6	30	2.3	0.0	6.9	8.1	15
ISLIZ			30	2.3	0.6	7.6	8.7	15
TSL15		5.6	29	2.5	0.0	8.1	9.5	15
ISLIS		5.6	29	2.5	0.6	8.7	10.1	15
TSL18	208/230-60-1	6.6	33	2.5	0.0	9.1	10.8	15
15118	208/230-60-1	0.0		2.5	0.6	9.7	11.4	15
TSL24		12.8	58.3	4.3	0.0	17.1	20.3	30
13124		12.0	36.3	4.3	0.6	17.7	20.9	30
TSL30		10.0	64	4.3	0.0	17.1	20.3	30
13L30	12.8	12.8	04	4.3	0.6	17.7	20.9	30
TC1 2C			6.4	0.0	20.2	23.7	35	
TSL36		14.1	77	6.1	0.6	20.8	24.4	35

ECM-CT Motor (265V)

Model #	Voltage Code	Comp	ressor	Blower Motor	Pump Option	Total Unit	Min Circuit	Max Fuse
	-	RLA	LRA	FLA	FLA	FLA	Amps	Amps
TSL09		3.5	22	2.3	0.0	5.8	6.7	15
13203		3.3	22	2.5	0.6	6.4	7.3	15
TSL12		3.9	23	2.3	0.0	6.2	7.1	15
13L12		3.9	23	2.3	0.6	6.8	7.8	15
TSL15		5.0 28	2.5	0.0	7.5	8.8	15	
13213		5.0	20	2.0	0.6	8.1	9.4	15
TSL18	265-60-1	5.6	28	2.5	0.0	8.1	9.5	15
ISLIO	205-00-1	5.6	28	2.5	0.6	8.7	10.1	15
TSL24		9.6	54	4.3	0.0	13.9	16.3	25
13L24		9.6	54	4.3	0.6	14.5	16.9	25
TSL30		10.9	60	4.3	0.0	15.2	17.9	25
13L30		10.9	60	4.3	0.6	15.8	18.6	25
TC1 20		40.0		6.4	0.0	18.3	21.4	30
TSL36		12.2	72	6.1	0.6	18.9	22.0	30

Unit wiring diagrams available at www.climatemaster.com. Select 'Commercial Professional', 'Literature', 'Wiring Diagrams'.

Typical Unit – Exploded View

Major Components

1. TSL Cabinet (Furred-in)

- A floating condensate drain pan
- B drain P trap
- C supply air plenum
- D optional surface mount thermostat 2 x 4 box horizontal
- E optional disconnect / breaker location
- F upper control box (high voltage terminal blocks optional MPC
- G blower assembly/motor
- H risers (not shown)
- I shutoffs (not shown)
- J filter panel
- K filter

1E

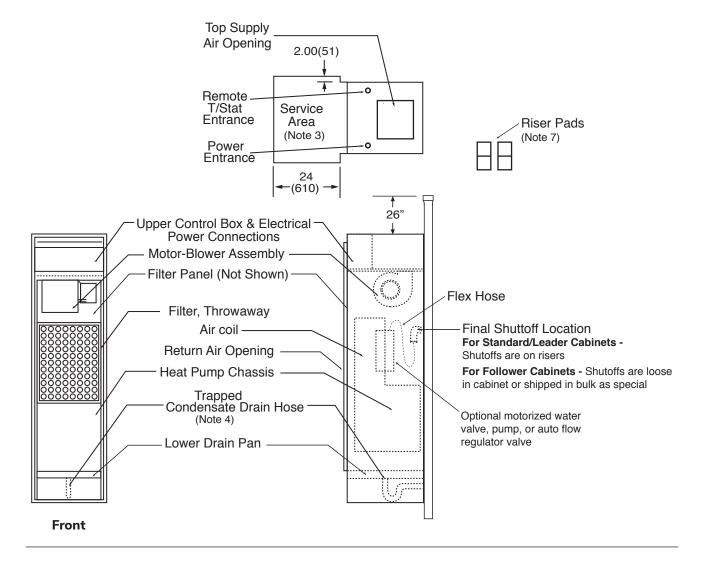
1F

1D

1G

2. TSL Chassis

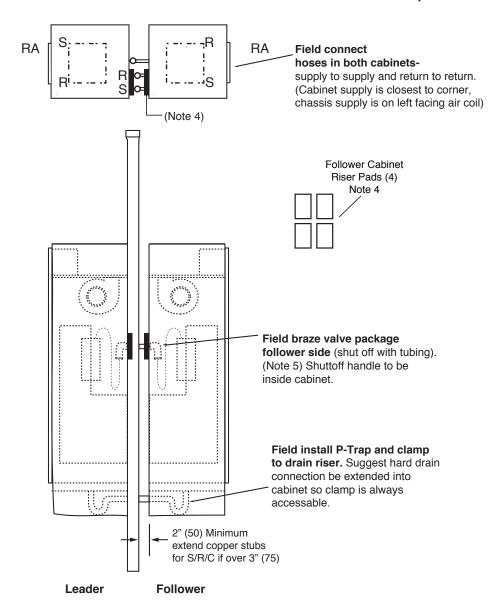
- A compressor with acoustic enclosure, water coil, reversing valve
- B data plate
- C lower control box (transformer, CXM/DXM2, contactor)


- E high and low voltage locking quick connectors
- F air coil
- G- Optional Service Connection (DXM2 Controls only)

3. Architectural Acoustic Return Air Panel (G)

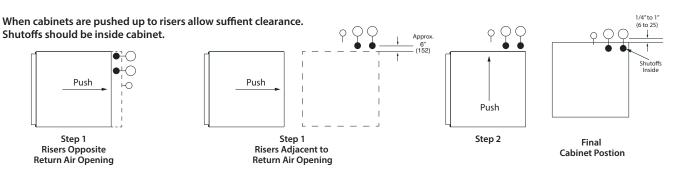
- A frame
- B hinged inner panel
- 4. Hoses (Not Shown)
- 5. Supply Air Grille (Not Shown)
- 6. Thermostat (Not Shown)

Note - Matching labels for visual aid, chassis and cabinet same size and voltage

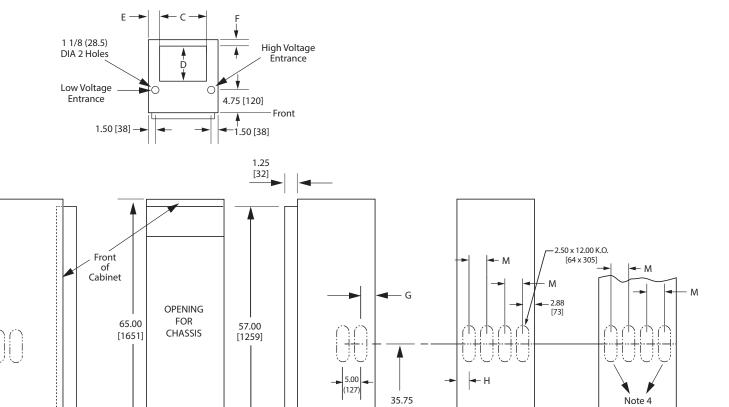


Notes:

- 1. All dimensions are in inches (mm).
- 2. The return air/control box side is defined as front of cabinet. Riser K.O.'s are on all panels.
- 3. Service area from finished wall and 4"wider than cabinet.
- 4. Contractor to supply ductwork, see blower table for maximum static.
- 5. Installer must apply riser pads to outside of cabinet to seal supply and return slots.



Leader/Follower Cabinet



Notes:

- 1. Contractor must meet all fire and building code requirements.
- 2. Size riser diameter for both units GPM.
- 3. Leader/Follower means both units share common riser.
- 4. Install pads on back of follower cabinet to cover slots used for S/R risers.
- 5. Installer must provide crossover water piping from riser to follower unit. Piping must have same pressure rating or higher as riser.

D Cabinet Dimensions

[908]

2.25 x 3.00 K.O.

[57 x 76]

BACK

3.12 [79]

Notes:

L.H. SIDE

1. All dimensions are in inches (mm).

FRONT

2. Cabinets have riser K.O.'s, all panels. Remove only K.O.'s necessary to configure cabinet. Seal any K.O.'s removed by mistake.

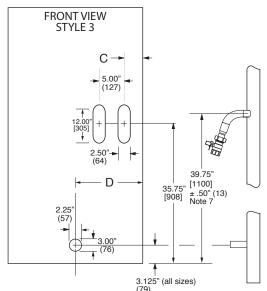
В

R.H. SIDE

- 3. Service area to be width of cabinet and 24" [610] from finished wall.
- 4. For 09-18 cabinet use drain diagonally across from supply and return risers.
- 5. Cabinet model digits 11 and 12 will be E0.

6.00 [152]


Size	Α	В	С	D	Е	F	G	Н	J	K	L	М
09-12	17.00 [432]	17.00 [432]	11.50 [292]	6.00 [152]	2.62 [67]	.665 [17]	2.75 [70]	1.71 [44]	11.34 [288]	11.93 [303]	11.34 [288]	4.63 [117]
15-18	19.25 [489]	19.00 [483]	11.50 [292]	6.00 [152]	3.87 [93]	.665 [17]	2.75 [70]	2.83 [72]	12.08 [307]	11.93 [303]	12.08 [307]	4.63 [117]
24-36	24.25 [616]	24.00 [610]	12.00 [305]	12.00 [305]	6.12 [156]	1.04 [26]	2.73 [69]	2.83 [72]	12.08 [307]	11.98 [304]	N/A	5.00 [127]

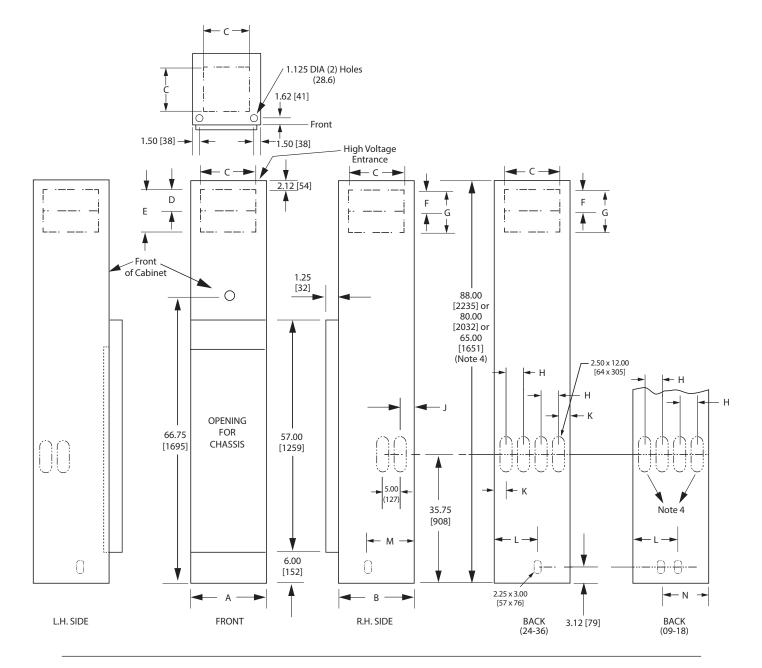

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1.405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climateMaster.com. © ClimateMaster inc. All rights reserved 2014.

BACK

(09-18)

D Cabinet Slot Dimensions and Riser Arrangements

NOTICE!

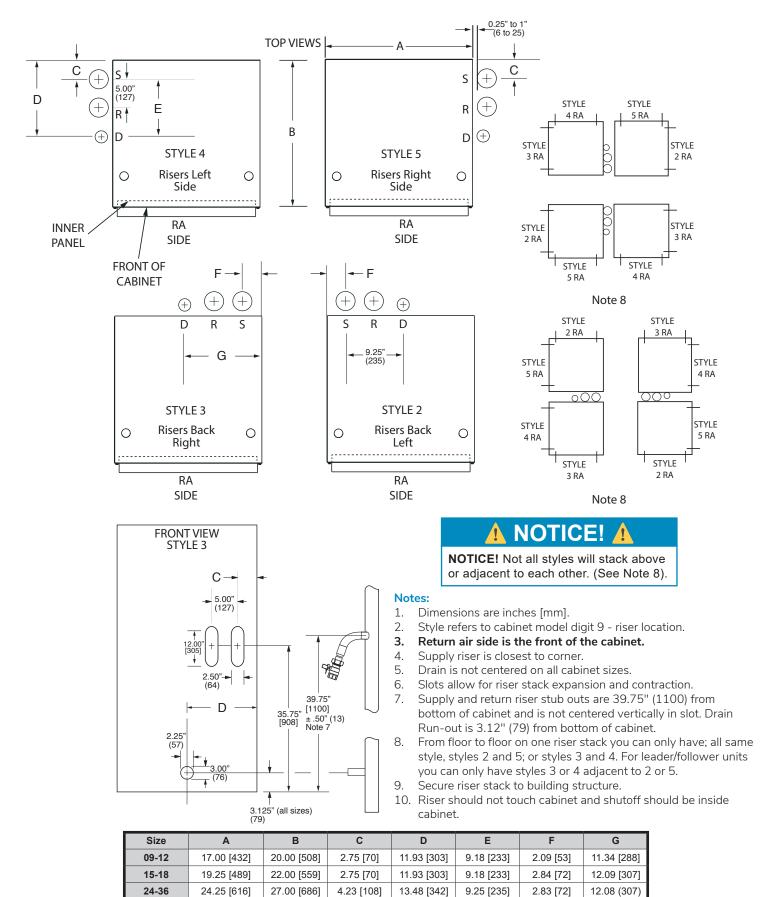

NOTICE! Not all styles will stack above or adjacent to each other. (See Note 8).

Notes:

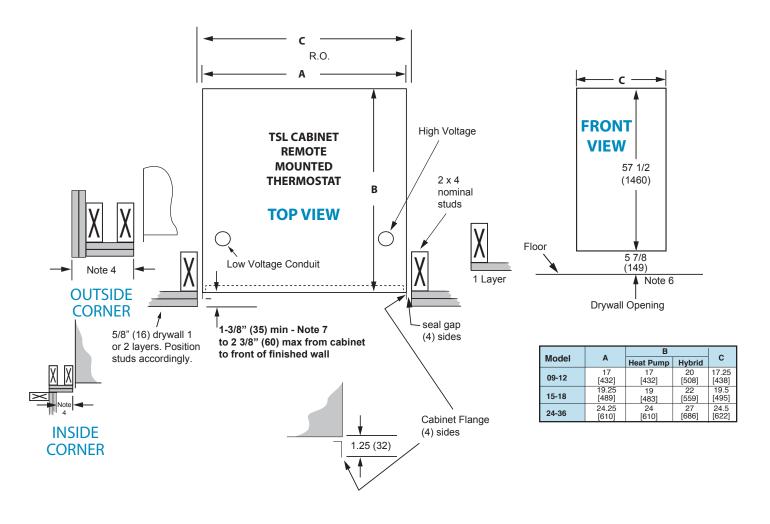
- 1. Dimensions are inches [mm].
- 2. Style refers to cabinet model digit 9 - riser location.
- 3. Return air side is the front of the cabinet.
- 4. Supply riser is closest to corner.
- 5. Drain is not centered on D1-D4 (09-18) cabinets.
- 6. Slots allow for riser stack expansion and contraction.
- Supply and return riser stub outs are 39.75" (1100) from bottom of cabinet and is not centered vertically in slot. Drain Run-out is 3.12" (79) from bottom of cabinet.
- From floor to floor on one riser stack you can only have; all same style, styles 2 and 5; or styles 3 and 4. For leader/follower units you can only have styles 3 or 4 adjacent to 2 or 5.
- Secure riser stack to building structure.
- 10. Riser should not touch caninet and shutoff should be inside cabinet.

Size	Α	В	С	D	E	F	G
09-12	17.00 [432]	17.00 [432]	2.75 [70]	11.93 [303]	9.18 [233]	1.71 [44]	11.34 [288]
15-18	19.25 [489]	19.00 [483]	2.75 [70]	11.93 [303]	9.18 [233]	2.83 [72]	12.08 [307]
24-36	24.25 [616]	24.00 [610]	2.73 [69]	11.98 [304]	9.25 [235]	2.83 [72]	12.08 [307]

E Cabinet Dimensions



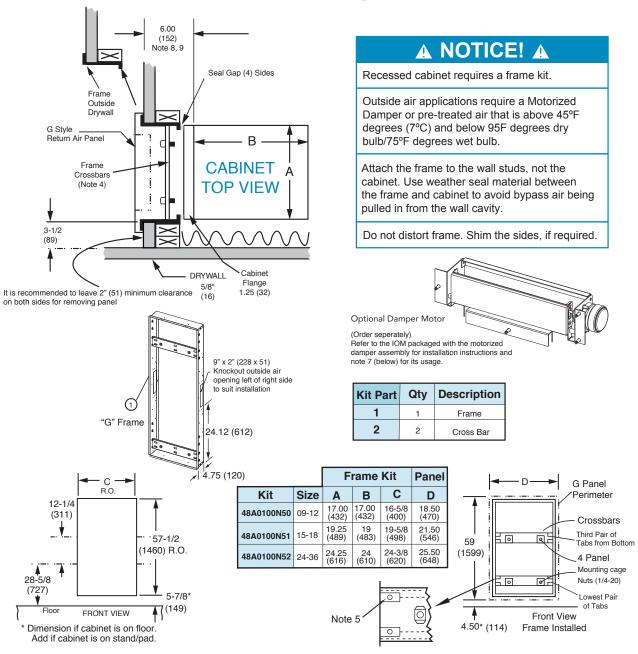
Notes:


- 1. All dimensions are in inches (mm).
- 2. Cabinets have supply air and riser K.O.'s, all panels. Remove only K.O.'s necessary to configure cabinet. Seal any K.O.'s removed by mistake.
- 3. Service area to be width of cabinet plus 4" [102] and 24" [610] from finished wall.
- 4. For 9-18 cabinet use drain diagonally across from supply and return risers.

Size	Α	В	С	D/F	E/G	Н	J	K	L	M	N
09-12	17.00 [432]	20.00 [508]	12.00 [305]	6.00 [152]	12.00 [305]	4.63 [117]	2.75 [70]	2.09 [53]	11.34 [288]	11.93 [303]	11.34 [288]
15-18	19.25 [489]	22.00 [559]	14.00 [356]	6.00 [152]	14.00 [356]	4.63 [117]	2.75 [70]	2.84 [72]	12.09 [307]	11.93 [303]	12.09 [307]
24-36	24.25 [616]	27.00 [686]	16.00 [406]	8.00 [203]	16.00 [406]	5.00 [127]	4.23 [108]	2.83 [72]	12.08 [307]	13.48 [342]	N/A

E Cabinet Slot Dimensions and Riser Arrangements

Typical Cabinet with "G" Panel Installation

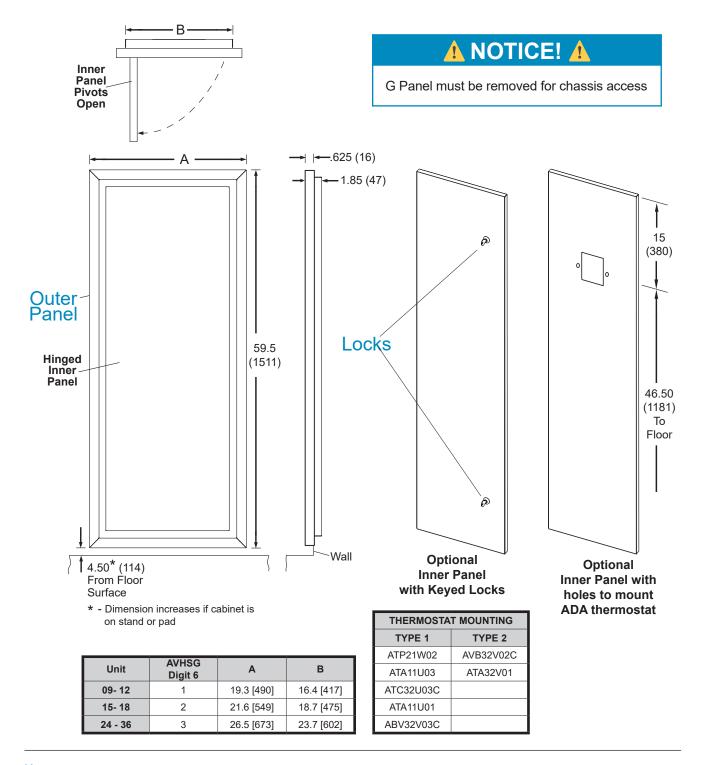

All dimensions are in inches (mm).

- Cabinet configuration will determine slab core drilling location and walls surrounding cabinet.
- Recommend stud walls surrounding cabinet. Drywall and studs should not be attached or contacting cabinet for best sound attenuation. Where possible fill gaps with sound absorbing material. Use iso pad under cabinet. Secure cabinet to floor in two places at back.
- Return air panel (not shown) overlaps rough opening, allow minimum of 3 1/2" (89) dry wall to corner. Do not caulk G panel to wall.
- Installer supplied top duct should connect with flex boot.
- If cabinet stand or ISO pad is used add to dimension.
- For 2"(50) filter set cabinet 2"(50) minimum from front of drywall.

NOTICE!

Seal between studs and cabinet flanges with weather tight foam material to prevent wall cavity air from infiltrating unit or room.

Typical Recessed Cabinet with "G" Panel and Frame Installation


Notes:

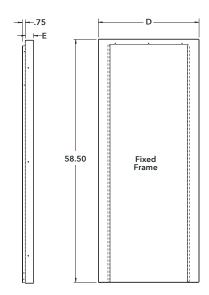
- 1. The cabinet configuration will determine the slab core drilling location and the wall surrounding the cabinet.
- 2. Stud walls surrounding the cabinet are recommended. For better sound attenuation, the drywall studs should not be attached to or contacting the cabinet.
- 3. The "G" style return air panel overlaps its rough opening. Allow a minimum of 3.5" (89) of drywall to a corner. Do not caulk the return air panel to the wall.
- 4. The "G" panel attaches to the cross bars of the frame kit. The cabinet must be recessed behind the wall.
- 5. For air filter access, pivot the hinged inner panel and open the snapped filter access panel.
- 6. For chassis access,
 - a. Remove the entire G-Panel
 - b. Remove the (2x) cross bars of the frame kit
 - c. Remove the cabinet's filter panel
 - d. Slide out the chassis
- 7. When untreated outside air will be utilized, the 48A0100N04 motorized damper must be used. The mixed air temperature must be no lower than 45°F degrees (7°C), must be no higher than 95°F DB/75°F WB, and must not exceed 20% of the cabinets total CFM output.
- 3. For a 2" filter, set the cabinet 6.25" (158) from the front of the dry wall.
- 9. If the drywall flanges (Qty. 4) are removed, the cabinet can be set 1" (25) closer to the finished drywall.
- 10. All dimensions are inches (mm) with all nominal 2" x 4" studs being 1.5" (38) x 3.5" (89).

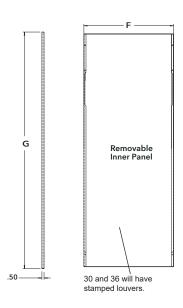
ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, inc. All rights reserved 2014

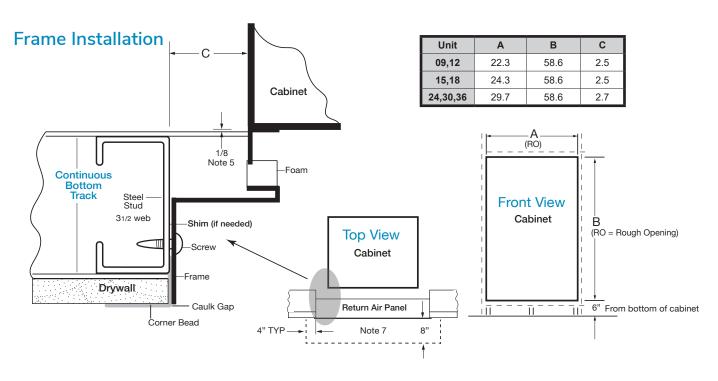
Page_

Hinged "G" Style Return Air Panel – AVHSG Series

Notes:

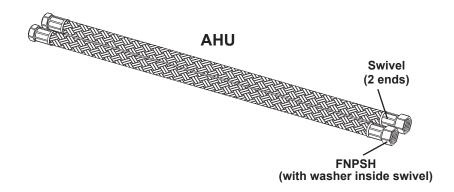

- 1. Dimensions are in inches (mm).
- 2. Panel painted polar ice or bright white.
- 3. Inner panel pivots open 90°, for filter replacement without removing panel.
- 4. Shipped as left-hand pivot, but can be field converted to right hand. Cannot convert panel with grille or ADA options.
- 5. Optional locks and/or ADA mounted thermostats available.
- 6. Optional frame for recessed cabinet applications and damper assembly available. See Recessed Cabinet.
- 7. Please review the ADA knockout Type 1 and 2 thermostat table to ensure compatibility between the panel and thermostat selected.


"L" Style (Flush Mounting) Return Air Panel – AVHRL Series


▲ NOTICE! **▲**

Frame is attached to studs. Panel is removable for chassis access.

Unit	AVHRL Digit 6	D	E	F	G
09,12	1	22.1	2.0	19.5	55.8
15,18	2	24.1	2.0	21.5	55.8
24	3	29.6	2.0	26.5	55.9
30,36	4	29.6	2.0	26.5	55.9


Notes:

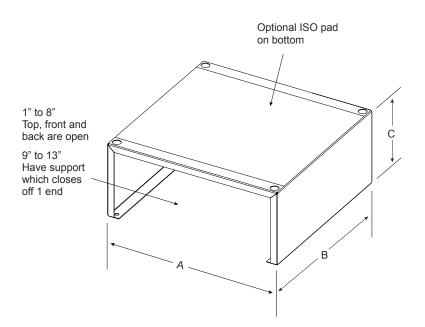
- 1. Dimensions are in inches.
- 2. Frame and panel painted bright white.
- 3. Panel is removable for filter replacement or chassis removal.
- 4. Frame ships with cabinet—must be installed while framing.
- 5. Set bottom track 1/8" in front of cabinet.
- 6. Drywall mud is added to the corner bead to produce a smooth finished surface.
- 7. Unobstructed area for required air flow.

Hose Kits and Stands

AHU Series Hose Kit Specifications:

- AHU hose kits used for connection with ClimateMaster standard ball valves.
- Designed for vertical high rise water-source heat pump applications.
- Kevlar® reinforced EPDM core with ANSI 302/304 stainless steel outer braid.
- Fire rated materials per ASTM E 84-00 (NFPA 255, ANSI/UL 723 & UBC 8-1).
- Swivel connection provides union between chassis and riser shutoff.
- Brass fittings, stainless steel ferrules.
- Temperature range of 15°F [9°C] to 180°F [82°C]. (Operation below 32°F requires antifreeze)
- Max. working pressure of 400 psi [2756 kPa].
- Min. burst pressure of four times working pressure.

Physical Data


Unit	Inside Diameter inches	Length feet [cm]	Working Pressure psi [kPa]	Min. Burst Pressure psi [kPa]	Min. Bend Radius inches [mm]
09 - 12	0.50	3 [91]	400 [2756]	1600 [11024]	3.56 [91]
15 - 18	0.75	3 [91]	400 [2756]	1600 [11024]	3.56 [91]
24 - 36	1.00	3 [91]	400 [2756]	1600 [11024]	4.3 [109]

ACST Cabinet Stands

Specifications

- 1" to 13" (25 to 330) tall, 1" (25) increments
- 16 Gauge galvanized steel
- Attached to cabinet with 4 screws
- Ships in bulk for field installation.
- Optional ISO pad 0.1" (2.5) thick

Unit	Α	В	С
09-12	16.8 [427]	16.2 [411]	
15-18	18.9 [480]	18.3 [465]	1 to 13 (25 to 330)
24-36	23.9 [607]	23.3 [592]	

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of fits products. The latest version of this document is available at climatemaster.com. © ClimateMaster, reserved 2014.

Supply Air Openings and Grilles

Supply Air K. O.'s in Cabinets

Cabinet Size	Cabinet Height	Front	Sides/Back	Тор
C1, C2	88	12 x 6	3 and 12 x 12	12 x 12
(09, 12)	80	12 x 6	12 x 6 and 12 x 12	12 X 12
C3, C4	88	14 x 6	and 14 x 14	14 x 14
(15, 18)	80	14 x 6	14 x 6 and 14 x 12	14 X 14
C5, C7	88	16 x 8	16 x 16	
(24, 36)	80	16 x 6	16 x 6 and 16 x 12	סו א סו

Supply Air Grille Openings/Sq. In.

Cabinet	Number of	Minimum Sq.in.	Recommended Sq.in.
Size	Openings	Openings*	Openings
C1, C2 (09, 12)	1 or 2	144 (1 - 12 x 12) (2 - 12 x 6)	288 (2 - 12 x 12)
C3, C4 (15, 18)	1, 2, or 3	168 (1 - 14 x 12) (2 - 14 x 6)	392 (2 - 14 x 14)
C5, C7	2 or 3	384	512
(24, 36)		(2 - 16 x 12)	(2 - 16 x 16)

^{*} Less than minimum Sq. In. opening will have higher sound levels than published

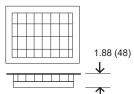
Nominal	Double Deflection Free Area (Sq. Ft)							
Grille Size	Deflection 0°	Deflection 22 1/2°	Deflection 45°					
12 x 6	.30	.28	.22					
12 x 12	.65	.59	.48					
14 x 6	.40	.38	.33					
14 x 12	.80	.71	.55					
14 x 14	.95	.86	.70					
16 x 8	.61	.55	.44					
16 x 12	.93	.85	.68					
16 x 16	1.25	1.12	.90					

Notes:

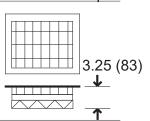
- 1. When selecting supply air openings/grilles consider CFM, velocity (throw), added static pressure and sound.
- 2. Other sizes available as special.
- 3. If custom grille sizes are used area should be greater or equal to above.
- 4. If using more than recommended number of opening, total CFM may be reduced or be unstable (PSC or ECM Motor).
- 5. If only top is used, suggest using TSL which are shorter cabinets so that duct will have more space to be designed for static regain.

Supply Air Openings and Grilles

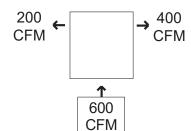
Grilles are shipped loose for field installation after drywall has been finished. Grilles are offered in three different styles, brushed aluminum, painted polar ice or painted bright white to match the return air door standard colors. Overall dimensions - add 1.25 (32) to nominal dimensions.


A816GA Series Grilles

Single Deflection - Adjustable vertical blades for controlling horizontal path of discharge air (Left/Right).


A816GB Series Grilles

Double Deflection - Adjustable vertical and horizontal blades for controlling horizontal and vertical path of discharge air. (Left/Right and Up/Down) Recommended for all standard applications.


A816GC Series Grilles

Double Deflection with Opposed Blade Damper - Addition of opposed blade damper to grille allows control of air volume (CFM) and path of discharge air. Recommended for applications requiring unequal air flow or side discharge grille(s) with additional top discharge air opening.

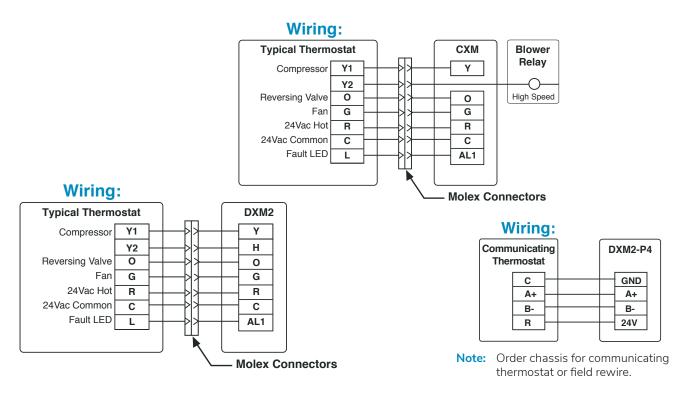
Unequal Air Flow - Air discharges requiring different air volumes (CFM). Use double deflection with opposed blade damper grilles.

Top Discharge - Units are designed to operate against relatively low air resistance (external static). Use of liberal duct sizing is recommended to maximize total unit air flow (CFM). Top duct outlet will offer more resistance to air flow than side outlets on the same cabinet. For top discharge only use TSL Series.

▲ NOTICE! **▲**

Top air discharge units will require turning vanes and/or a volume damper for proper air flow and balancing, to minimize turbulence. These components must be field furnished and installed in accordance with SMACNA guidelines.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest eversion of this document is available at climateMaster.com. © ClimateMaster, reserved 2014.


Thermostats

Whether you're on a tight budget or have interest in the latest technology we have many types of thermostats to meet your project needs. Check out the details of our full thermostat product offering at https://www.climatemaster. com/commercial/products/thermostats-and-accessories.

Standard thermostats ship stand-a-lone and require field labor to make wiring connections on thermostats. ClimateMaster's A91558 Series adds a 6" whip factory assembled to the thermostat on one end with a 9-pin electrical quick connector on the other end. This is designed for remote thermostat location applications. Cabinets can be order with 15', 25', or 35' remote thermostat whips. These whips come with the matching 9-pin electrical connector so thermostats can be quickly and easily installed in the field.

Customer supplied thermostats should be approved by ClimateMaster Engineering Department prior to using.

Below are a few examples of how thermostats are wired. Please see TSL and thermostat IOMs for full details.

Thermostat Assembly with Molex Connector 6" Pigtail	Thermostat Only+	Remote	Surface	ADA	CXM	DXM	Manual Changeover	Automatic Changeover	Programmable	Digital	Fault Indicator	Setback Override	Fan Speeds	Wi-Fi	Wireless remote temp. sensor
A9155801	ATA11U01	X	X	X	Х	Х	X	Χ	-	X	X	-	1	-	-
A9155802	ATA11U03	Х	Х	Х	Х	Х	X	-	-	Х	-	-	2*	-	-
A9155804	ATA22U01	Х	Х	Х	Х	Х	Х	X	-	Х	Х	-	2**	-	-
A9155809	ATP21W02	-	-	Х	Х	Х	Х	Х	Х	Х	Х	-	1	-	-
A9155810	ATP21W02	-	Х	-	Х	Х	Х	Х	Х	Х	Х	-	1	-	-
A9155811	ATP21W02	Х	-	-	Х	Х	Х	Х	Х	Х	Х	-	1	-	-
A9155805	ATP32U03C	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	2**	-	-
A9155806	ATC32U02C	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	2**	-	-
A9155813	ATA32V01	Х	Х	Х	Х	Х	Х	Х	-	Х	-	Х	2**	-	-
A9155814	AVB32V02C	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	2**	Х	Х
A9155815	AVB32V03C	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	2**	Х	Х

^{*}Fan speed change automatic through thermostat Y2 signal.

^{** -} Manual speed change Note: A9155809 for ADA, A9155811 for Remote Mount.

Thermostats

CM 500 (AVB32V03C)

5.25" w x 4" h x 1.1" d

- 7-day Programmable
- Wi-Fi Enabled
- Color Touch Screen
- Humidity control
- For use with water source heat pumps
- Mobile and web apps available for remote monitoring
- California Title 24 compliant

CM 300 (AVB32V02C)

3.2" w x 3.2" h x 0.9" d

- 7-day Programmable
- Wi-Fi Enabled
- Humidity control
- For use with water source heat pumps
- Mobile and web apps available for remote monitoring
- California Title 24 compliant

CM 100 (ATA32V01)

3.1" w x 3.1" h x 1.0" d

- Auto Changeover Automatically switches between cooling or heating
- LED indicator light glows green or red to indicate cooling or heating
- Can control temperature to within 1° of set point
- 3-stage heating and 2-stage cooling for use with heat pump
- All programming and set points stored in nonvolatile memory
- Key pad Locking set points can only be adjusted by authorized individuals when this feature is on
- Large number display, extremely easy to operate and program

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications; statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of fits products. The latest version of this document is available at climatemaster.com. © ClimateMaster, but. All rights reserved 2014

LC1007 - 77 Page _____ of ____

TSL Cabinet Options

Optional Cabinet Disconnect Switch

Located on control box access door. Can be accessed through slot in "G" Panel Frame. Classified as motor disconnect. See Cabinet decoder.

Optional Cabinet Circuit Breaker

Located on control box access door. Can be accessed through slot in "G" Panel Frame. All 208/230V and 265V 15 and 20 amp classified as HACR breaker. 265V 25 amp and higher classified as supplemental breaker. See Cabinet decoder.

Optional Thermostat Wire Harness (WHIP)

Low voltage wire harness 15, 25, or 35 foot ending with 9-Pin Molex quick connector. Exits cabinet on top, left front corner. Thermostat cable is rated CL-2. See Cabinet decoder. Can be encased in BX conduit as special, contact factory.

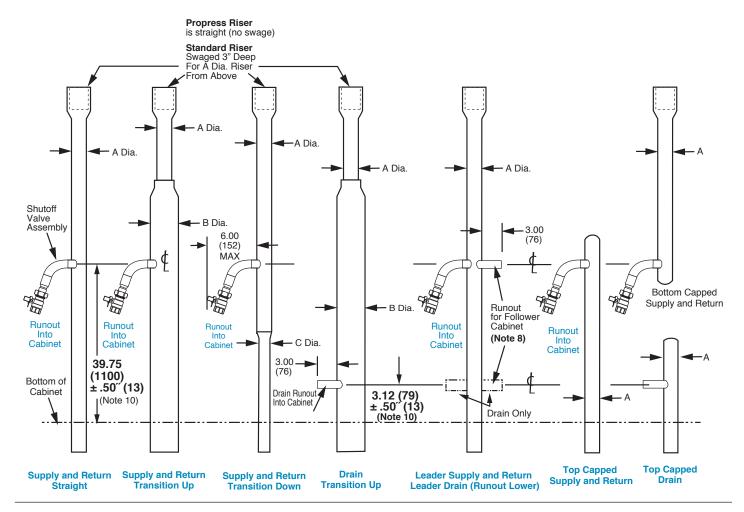
Optional Premium Seal

Located on cabinet filter panel, seal is upgraded to extruded rubber gasket for durability and long life.

Optional 2" Filter and Holder

2" filter improves air filtration and reduces maintenance.

Accessory Filters (Not available for every application - check blower table for ESP)


1" (25mm) thick, MERV 8, and MERV 11

2" (50mm) thick, MERV 8, MERV 11, and MERV 13

TSL Accessory Filter ESP Table

		TSL with ECM Motor				Accessory Filter Initial ESP				
Model	Size	Max CFM	Max ESP	coil area	face velocity			Mer		Merv 13
modol	0.20	max or m	max 201	sq ft	fps	1"	2"	1"	2"	2"
D1	9	450	0.4	2.5	180	0.08	0.06	0.09	0.08	0.15
D2	12	450	0.4	2.5	180	0.08	0.06	0.09	0.08	0.15
D3	15	700	0.5	2.5	280	0.17	0.14	0.22	0.15	0.25
D4	18	800	0.5	2.5	320	0.20	0.16	0.29	0.19	0.28
D5	24	950	0.6	3.4	280	0.17	0.14	0.22	0.15	0.25
D6	30	1150	0.6	3.4	340	0.22	0.16	0.33	0.20	0.30
D7	36	1350	0.6	3.4	400	0.26	0.21	0.44	0.24	0.34

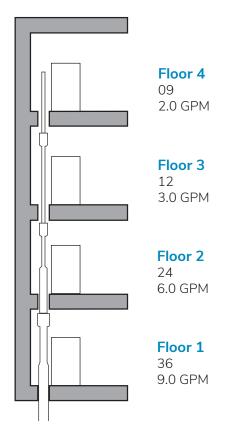
Riser Definitions

	Riser Diameter (in)						
Α	1.00	1.25	1.50	2.00	2.50	3.00	4.00
В	1.25	1.50	2.00	2.50	3.00	-	-
С	-	1.00	1.25	1.50	2.00	2.50	-

Notes:

- You must know water flow direction to determine if cabinet requires transition up or down.
- 2. Transitions can only change by one diameter (1" to 11/4", 11/4" to 11/2", etc.)
- 3. Riser transition couplings and run-outs are factory brazed.
- 4. All risers are factory pressure tested.
- 5. Standard riser diameters are nominal 1", 1¼", 1½", 2", 2½", and 3". Please consult the factory on pricing for nominal 4" water tubing.
- 6. Copper Type M and L available (4" L only).
- 7. Drain riser insulated standard. Insulation is optional for supply and return
- 8. Leader riser For follower cabinet riser ball valve assemblies, 12" of straight copper are provided for field connection to the leader riser. Assembly to be cut to length and field brazed. In applications where more than 12" of straight copper is needed, copper and fittings to be field provided.
- 9. Standard ball valves have NPSH threads for connection to AHU hoses (1/2" for D/E1-2 (sizes 09-12); 3/4" for D/E3-4 (sizes 15-18); 1" for D/E5-7 (sizes 24-36)).
- 10. If cabinet stand or thick ISO pad is used, at installation add height/thickness to shutoff valve and drain run-out height. Verify riser shutoff height with plans before brazing.

Note: ClimateMaster units with motorized valve option have water high pressure switches. Do not design riser stack where switch will not reset (trip - 300 PSI; Reset - 250 PSI).


Standard Valve (Cabinet Digit 10 = 5) Used with AHU Style Hoses

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of fits products. The latest version of this document is available at climatemaster.com. © ClimateMaster, inc. All rights reserved 2014.

Riser GPM Definitions and Sizing

Riser GPM requirements and individual Unit GPM requirements are necessary to select the proper Riser Piping diameters. Refer to this page to determine GPM requirement, then refer to Riser Diameter Sizing Table to determine Riser Piping diameters.

Example is for bottom supply (upward flow) - bottom return (downward flow) system feed loop, both supply and return will be same GPM. GPM's are dependent upon unit load and system loop water temperatures. Please refer to Performance Charts for individual Unit GPM requirements.

Unit GPM (UGPM) = Required gallons per minute from "Performance Charts," or GPM used to calculate unit capacity.

Note: For factory installed AFR check Flow Rate available (See Table)

Total Riser GPM (TRGPM) = The total GPM's required for all units on each riser.

Total GPM Per Floor (TGF) = Total GPM minus the sum of Unit GPM from all floors above or below, depending on direction of flow.

Example: Four floors, Consisting of units sizes TSL36, TSL24, TSL12 and TSL09, as shown in diagram. UGPM's are 9.0, 6.0, 3.0 and 2.0 respectively.

TRGPM = 9.0 + 6.0 + 3.0 + 2.0 = 20 GPM.

Upward Flow:

Floor 1: TGF = 20 Add all floor GPM's (TRGPM). Floor 2: TGF = 11 Total GPM minus floor 1 GPM.

Floor 3: TGF = 5 Total GPM minus floors 1 and 2 GPM's.

Floor 4: TGF = 2 Total GPM minus floors 1, 2, and 3 GPM's.

Downward Flow:

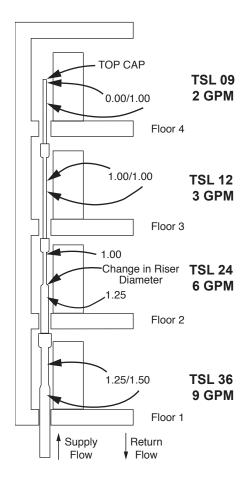
Floor 4: TGF = 20 Add all floor GPM's (TRGPM).

Floor 3: TGF = 18 Total GPM minus floor 4 GPM.

Floor 2: TGF = 15 Total GPM minus floors 1 and 2 GPM's.

Floor 1: TGF = 9 Total GPM minus floors 1, 2, and 3 GPM's.

	Auto-Flow Regulator (US GPM) Code										
	5/8 S	weat		7/8 SWEAT							
	Unit 09	Unit 12	Unit 15	Unit 18	Unit 24	Unit 30	Unit 36				
С	1.5	_	-	-	-	_	_				
D	2.0	2.0	-	-	-	-	_				
Е	2.5	2.5	2.5	-	-	-	_				
F	3.0	3.0	3.0	3.0	-	-	_				
G	-	3.5	3.5	3.5	-	-	_				
Н	-	-	4.0	4.0	4.0	-	_				
J	-	-	-	5.0	5.0	5.0	_				
K	-	-	-	-	6.0	6.0	6.0				
L	_	_	-	_	7.0	7.0	7.0				
М	_	_	_	_	_	8.0	8.0				
N	_	_	_	_	_	_	9.0				
Р	_	_	_	_	_	_	10.5				


ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of fits products. The latest version of this document is available at climatemaster.com. © ClimateMaster, reserved 2014.

Riser Diameter Sizing

Refer to Riser GPM Definitions and Sizing for the prefix to this example.

Each TSL Vertical Stack unit has three riser pipes: supply, return, and drain. The following example will be for Supply and Return riser pipe (from the top floor to the bottom floor), supply flow up and return flow down.

Note: If flows are both same direction, you will have to create two table 3's, Supply and Return

From Table 1 (below) determine the proper riser diameter needed to satisfy the required GPM's at each unit. Refer to Table 2 (below) for a summary.

Top Cap - Top half of riser is eliminated and sealed. **Bottom Cap** - Bottom half of riser is eliminated and sealed.

The following nomenclature is used to designate the diameters at the top (always first) and bottom of each unit.

0.00/1.00 - Indicates top cap/1" bottom.

1.00/1.00 - Indicates 1" top/bottom.

1.00/1.25 - Indicates 1" top/1.25" bottom.

1.25/1.50 - Indicates 1.25" top/1.50"bottom.

(from this we develop Table 3)

Note: Transition risers limited to 1 nominal diameter size larger or smaller within each floor (cabinet).

Table 1

Maximum GPM	10	16	23	48	80	135	190
Nominal Riser Diameter	1"	1-1/4"	1-1/2"	2"	2-1/2"	3"	4"

Max GPM for 1" to $1\frac{1}{2}$ " sized for 4 FT per second velocity Max GPM for 2" to 4" sized for 5.5 FT per second velocity

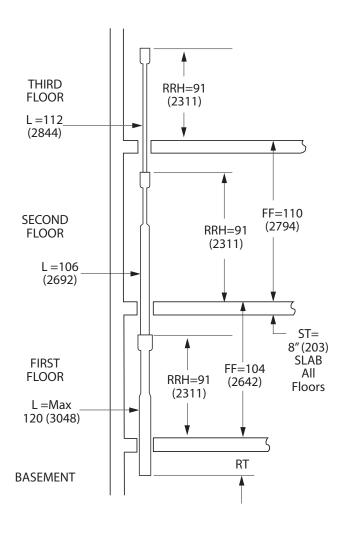
Note: Max GPM per NABB recommendation. Never exceed 6.5 FPS, excessive noise and abrasion will occur.

Table 2

Floor	TGF	Diameter From Table 1		
4	2	1" [25.4]		
3	5	1" [25.4]		
2	11	1.25" [31.8]		
1	20	1.50" [38.1]		

Table 3

Nomenclature per Unit	Description
0.00/1.00	Top Cap, w/1" Bot Feed
1.00/1.00	1" Full Length Riser
1.00/1.25	1" Top, 1.25" to 1st Floor
1.25/1.50	1.25" Top, 1.50" Bottom


Table 4 (From IMC-2012 Table 307.2.2)

Drain Diameter	Max Tonnage
1" [25 mm]	40
1¼" [32 mm]	90
1½" [38 mm]	125
2" [51 mm]	250

Values from Table 3 are to be entered on the Riser Piping Schedule of EZ order. Top diameter must match bottom diameter of floor above.

To calculate drain riser diameter, add up unit tonnage and use Table 4. Example has 634 tons, so 1" diameter is adequate.

Swage Riser Length Definitions and Sizing

Total Riser Length (L) for same height cabinets on every floor = FF of floor below + 2'' (51)

Note: If cabinet heights are mixed then L must be calculated.

Floor To Floor Height (FF): Distance from top of slab to top of above slab.

Room Riser Height (RRH): = 91 (2311) for all TSL's.

Riser Tail (RT): Length of riser extending down from the cabinet. Riser tail piece must extend a minimum of 5'' (127) below slab. RT = L - RRH

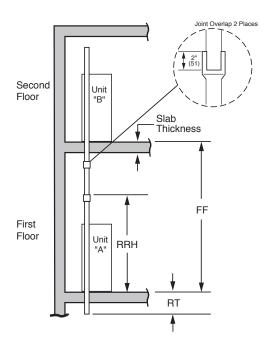
Slab thickness (ST): Slab thickness plus and additional material added to slab prior to setting cabinets.

Riser insertion into swage = 2" (51)

Calculating Riser Dimensions for Example: 8" finished slab all floors

FIRST FLOOR - (Pick L depending how far below slab wanted)

SECOND FLOOR


THIRD FLOOR

Notes:

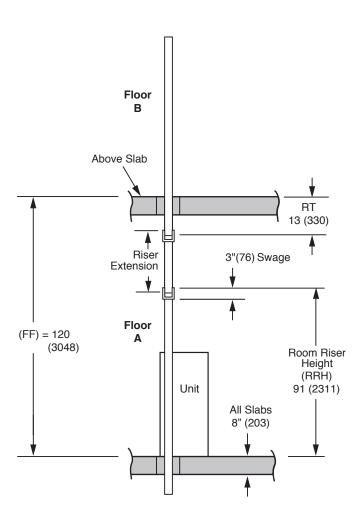
- 1. For calculating riser length do not include ISO pad or stand, except remember that below (B) on any floor should be 5 (127) or more for ease of brazing. For risers installed before cabinet—ISO pad or stand does affect riser shutoff valve and drain stub setting dimension from floor, add to 39.75 (1100) and 3.12 (79). Check plans before brazing.
- 2. If riser maximum is exceeded or RT is less than slab + 5" (127) must use extension, see riser extension sizing.
- 3. Complete all core drilling before assembling riser stack.
- 4. Set from lowest floor up.
- 5. Risers ship in bulk. Can ship by floor as special.
- 6. Secure riser stack to building structure and use expansion fittings as required.
- 7. For calculating and entering on EZ, use full length even if top or bottom is capped.
- 8. Dimensions are inches (mm).

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster, inc. All rights reserved 2014

Swage Riser Extension Definitions and Sizing

Riser Extension Length: Start with the floor to floor Dim. (FF) From this subtract the room riser height and tail length. Then add 4" (102) for the two joint overlaps.

Riser Extension Length = FF {First floor} - (RRH {First floor} + RT {Second floor}) + 4" (102). Minimum extension is 10 (254). Reduce riser length, if needed.


Riser Tail (RT): Length of riser extending down from the cabinet. Riser tail must extend a minimum of 5" (127) below slab, for ease of brazing.

Room Riser Height (RRH): 91 (2311) for TSL.

Floor To Floor Height (FF): Distance from top of slab to top of above slab. Slab thickness (ST); Slab thickness plus and additional material added to slab prior to setting cabinets.

Special care must be taken in sizing riser lengths and tail piece lengths when:

- A) Riser extensions are used.
- B) Floor to floor heights vary.
- C) Slab thickness varies from floor to floor.

Calculate extension length for Floor A.

Example: Floor to floor (FF) = 120" (3048)

Room Riser Height (RRH) = 91" (2311)

RT (Floor above) = 13'' (330).

Riser Extension: 120'' - (13'' + 91'') + 4'' = 20''.

 $3048 - (330 + 2311) + 102 = 508 \, \text{mm}.$

Notes:

- 1. Example shown riser extensions would be ordered with Floor "A" and assembled between "A" and "B".
- 2. Riser and extension "A" Top and Riser "B" bottom must be the same diameter. Extensions cannot transition.
- Extensions are shipped loose, bulk shipped to minimize shipping cost.
- 4. Dimensions are inches (mm).
- 5. Any extension below "A" can be ordered as a factory special.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1.-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climateMaster.com. © ClimateMaster, the caserved 2014.

Slab Hole Chart – 3 Pipe

Riser Stack Patterns

S R D For Cabinet Styles 2 and 5 For Cabinet Styles 3 and 4

Clear Height is Floor to Ceiling Dimension

Slab Hole, Risers Ship Loose and

Installed Before Cabinet						Riser Diameter													
	Clear	Height	Riser Length		3	76.2	76.2 2 50.8 1 29												
Model	in	mm	in	mm	in	mm	in	mm	in	mm									
	105	2667	115	2921															
	100	2540	110	2794	6.4/2														
A11	96	2438	106	2692		C 4/0	0.4/0	C 4/0	0.4/0	C 4/0	C 1/2	6.1/2	6 1/2	6.1/0	6.1/2	105	E 4/0	140	4.4/0
All -	95	2413	105	2667	0 1/2	165	5 1/2	140	4 1/2	114									
	94	2387	104	2641															
	93	2362	103	2616															

Dimensions for 8" (203) slab

Clear height is dimension from floor to ceiling. Riser length is clear height plus slab thickness plus 2" (50). Opening centerline must be aligned from floor to floor

For risers over 100" (2540) using extensions with clear height equal to riser length or more, the hole size can be riser diameter plus 1" (25mm). If riser diameter is not shown use next larger size.

Contractor is responsible to meet all codes and regulations.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at **climatemaster.com**. © ClimateMaster, Inc. All rights reserved 2014

Shipping

Units Are Shipped FOB Factory

Chassis can be shipped in two ways,

- Standing upright, chassis are packaged in a shipping carton and are shipped four chassis per pallet (See Figure 1).
- Standing upright, chassis are shipped in the cabinet.
 The chassis cabinet combo are shipped four units per pallet. This shipping methodology reduces the number of freight pieces by 50%. This reduces freight costs, labor to remove shipping material, and dunnage removal expenses (See Figure 1).

Cabinets can be shipped in two ways,

- 1. Standing upright, cabinets are packaged in shrink wrap and are shipped four cabinets per pallet (See Figure 1)
- 2. Laid horizontally with risers attached. Due to risers extending both below and above the cabinet anytime risers are attached to the cabinets horizontal shipping with the use of a flat bed truck is required. The number of cabinets per pallet can vary based on size and quantity mix (See shipping tables 2 and 2a below). Pallets are shrink wrapped and a tarp is applied over the products for added protection during transit.

Risers can be shipped in two ways,

- 1. Shipped horizontally attached to the cabinet. See cabinet shipping option 2 above for details
- 2. Shipped horizontally in a crate. Risers are crated by themselves and can be shipped independently from cabinets allowing for early installation. Risers shipping in a crate separately requires the use of a flat bed truck. The number of risers per pallet can vary based on diameter and quantity mix (See shipping table 3 below). Pallets are reinforced with a custom wood frame and packaging (See Shipping Figure 4 below).

Chassis, cabinets, and risers are palletized to maximize shipping density. The logic used for grouping is unit size by sales order.

Special shipping accommodations can be provided. Please see the Pre-Engineered factory design specials section for more details on this. Some examples include, palletizing by floor, palletizing by riser, end fork pallets, and reduced number of units per pallet.

Shipping Table 1 – Standard Chassis

Vertical Shipping												
		N	/lulti-pac	k	Qty Per	Multi-pack	Multi-pack	Pallet	Approx. Qty			
Description	Size	Length	Width	Height	Pallet	Weight (lbs)	Weight (kg)	Stacking	Per 53' Box Trailer			
	09-12	41	41	50	4	430	195	2 High	240			
Chassis	15-18	43	43	50	4	542	246	2 High	240			
	24-36	53	53	52	4	786	357	2 High	192			
	65" 09-12	41	41	72	4	422	192	1 High	112			
Cabinets	65" 15-18	43	43	72	4	466	212	1 High	112			
	65" 24-36	53	53	72	4	650	295	1 High	72			
	65" 09-12	41	41	72	4	830	377	1 High	112			
Chassis Shipped In Cabinets	65" 15-18	43	43	72	4	986	447	1 High	112			
iii Cabinets	65" 24-36	53	53	72	4	1,410	640	1 High	72			

Shipping Table 1a – Hybrid Series

			Ve	rtical Sh	ipping					
Description		Size	Length	/lulti-pac Width	k Height	Qty Per Pallet	Multi-pack Weight (lbs)	Multi-pack Weight (kg)	Pallet Stacking	Approx. Qty Per 53' Box Trailer
Chassis		09-12	48	41	50	4	562	255	2 High	208
		15-18	51	45	50	4	762	346	2 High	192
		24-36	61	55	52	4	984	447	2 High	80
		65" 09-12	48	41	72	4	498	226	1 High	104
	No Supply Flanges	65" 15-18	51	45	72	4	550	250	1 High	96
		65" 24-36	61	55	72	4	628	285	1 High	40
		80" 09-12	48	41	87	4	550	250	1 High	104
	No Supply Flanges	80" 15-18	51	45	87	4	606	275	1 High	96
		80" 24-36	61	55	87	4	696	316	1 High	40
		80" 09-12	48	41	87	4	550	250	1 High	104
Cabinets	Supply Flanges Installed	80" 15-18	51	45	87	4	606	275	1 High	96
		80" 24-36	61	55	87	4	696	316	1 High	40
	No Supply Flanges	88" 09-12	48	41	95	4	582	264	1 High	104
		88" 15-18	51	45	95	4	642	292	1 High	96
		88" 24-36	61	55	95	4	736	334	1 High	40
Supply		88" 09-12	48	41	95	4	582	264	1 High	104
	Supply Flanges Installed	88" 15-18	51	45	95	4	642	292	1 High	96
		88" 24-36	61	55	95	4	736	334	1 High	40
		65" 09-12	48	41	72	4	1026	466	1 High	104
	No Supply Flanges	65" 15-18	51	45	72	4	1274	578	1 High	96
		65" 24-36	61	55	72	4	1540	699	1 High	40
		80" 09-12	41	41	87	4	886	402	1 High	104
	No Supply Flanges	80" 15-18	43	43	87	4	1,078	489	1 High	96
		80" 24-36	53	53	87	4	1,482	672	1 High	40
Chassis		80" 09-12	41	41	87	4	886	402	1 High	104
Shipped In	Supply Flanges Installed	80" 15-18	45	45	87	4	1,078	489	1 High	96
Cabinets		80" 24-36	56	53	87	4	1,482	672	1 High	40
		88" 09-12	41	41	95	4	942	427	1 High	104
	No Supply Flanges	88" 15-18	43	43	95	4	1,138	516	1 High	96
		88" 24-36	53	53	95	4	1,542	700	1 High	40
		88" 09-12	41	41	95	4	942	427	1 High	104
	Supply Flanges Installed	88" 15-18	45	45	95	4	1,138	516	1 High	96
		88" 24-36	56	53	95	4	1,542	700	1 High	40

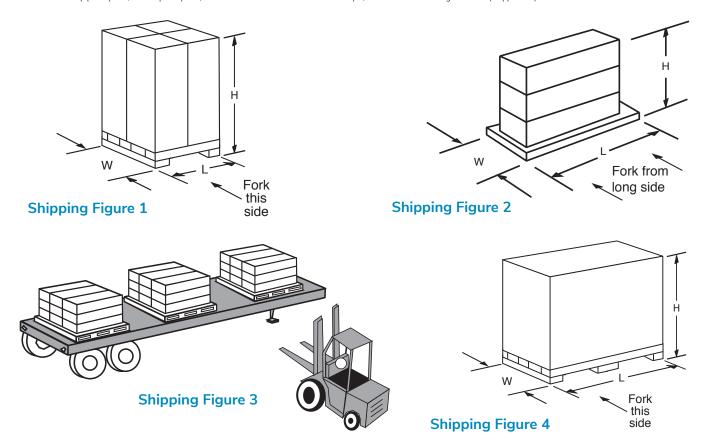
Shipping Table 2 – E Cabinet Series

Horizontal Shipping												
Description		N	/lulti-pack	(Multi-pack	Multi-pack	Pallet				
	Size	Length	Width	Height	Qty per pallet	Approx. Weight (lbs)	Approx. Weight (kg)	Stacking*				
	65" 09-12	127	58	87	6	1046	475	2 High				
	65" 15-18	127	58	93	6	1118	507	2 High				
	65" 24-36	127	68	76	4	906	411	2 High				
	80" 09-12	127	58	87	6	1,199	544	2 High				
Cabinets	80" 15-18	127	58	93	6	1,277	580	2 High				
	80" 24-36	127	68	76	4	1,016	461	2 High				
	88" 09-12	127	58	87	6	1,247	566	2 High				
	88" 15-18	127	58	93	6	1,331	604	2 High				
	88" 24-36	127	68	76	4	1,056	479	2 High				

^{*} Warehousing purposes only, pallets are shipped 1 High

Shipping Table 2a – D Cabinet Series

Horizontal Shipping											
Description	Size	Multi-pack				Multi-pack	Multi-pack	Pallet			
		Length	Width	Height	Qty per pallet	Approx. Weight (lbs)	Approx. Weight (kg)	Stacking*			
	65" 09-12	127	53	87	8	1150	522	2 High			
Cabinets	65" 15-18	127	53	93	8	1230	558	2 High			
	65" 24-36	127	63	76	6	1262	573	2 High			


^{*} Warehousing purposes only, pallets are shipped 1 High

Shipping Table 3

RISER SHIPPING												
		Pallet		# of Non-	# of Non-	# of	# of		Qty Pallets			
Nominal Size (in.)	Length (in.)	Width (in.)	MAX Height (in.) *	Insulated Layers per Pallet	Insulated Risers per Pallet	Insulated Layers per Pallet	Insulated Risers per Pallet	Pallet Stacking	Per 48' Flat Bed Trailer			
1	120	50	48	25	300	19	228	2 High	8			
1.25	120	50	48	22	220	17	170	2 High	8			
1.5	120	50	48	19	190	15	150	2 High	8			
2	120	50	48	15	150	12	120	2 High	8			
2.5	120	50	48	12	108	11	99	2 High	8			
3	120	50	48	11	88	9	72	2 High	8			
4	120	50	48	8	64	7	56	2 High	8			

Calculations based on all palleted risers having the same nominal diameter size. Actual number of risers per pallet and number will vary based on riser diameter and insulation attachment mix.

* - Includes the top pallet piece, bottom pallet piece, 0.25" cardboard dividers between each layer, and 0.375" thick tubing insulation (if applicable)

General:

Furnish and install ClimateMaster Tranquility® "TSL Vertical Stack" Water Source Heat Pumps, as indicated on the plans with capacities and characteristics as listed in the schedule and the specifications that follow.

Units shall be supplied completely factory built capable of operating over an entering water temperature range from 20° to 120°F (-6.7° to 48.9°C) as standard. Equivalent units from other manufacturers may be proposed provided approval to bid is given 10 days prior to bid closing. All equipment listed in this section must be rated and certified in accordance with Air-Conditioning, Heating and Refrigeration Institute/International Standards Organization (AHRI/ISO 13256-1). All equipment must be tested, investigated, and determined to comply with the requirements of the standards for Heating and Cooling Equipment UL-1995 for the United States and CAN/CSA-C22.2 NO.236 for Canada, by Intertek Testing Laboratories (ETL). The units shall have AHRI/ISO and ETL-US-C labels.

All units shall pass a factory acceptance test. The quality control system shall automatically perform the factory acceptance test via computer. A detailed report card from the factory acceptance test shall ship with each unit. (Note: If unit fails the factory acceptance test, it shall not be allowed to ship. Unit serial number shall be recorded by factory acceptance test and furnished on report card for ease of unit warranty status.)

Cabinet Construction:

The cabinet panels shall be fabricated from heavy gauge galvanized steel. The rigid one-piece cabinet assembly shall be constructed so that it is self-supporting, and can be installed prior to the chassis arrival, and to be able to avoid damage during construction. Cabinet shall have a full panel over the chassis opening for structural rigidity of the cabinet; **no "open" top or "open" bottom designs allowed.**

The cabinet base shall contain a secondary drain pan fully insulated with a pressure differential drain trap connected to the condensate riser pipe, and guide rails for the slide in refrigeration chassis. Drain pan to be rubber grommet mounted to provide isolation of chassis from the cabinet. Drain pan(s) shall be easily accessible for cleaning. All interior surfaces shall be lined with 1/2 inch (12.7 mm) thick, 1-1/2 lb/ft3 (24 kg/m3) acoustic type fiberglass insulation. All insulation shall be foil faced and have exposed edges butted up to flanges to prevent the introduction of glass fibers into the air stream.

Standard insulation must meet NFPA Fire Hazard Classification requirements 25/50 per ASTM E84, UL 723, CAN/ULC S102-M88 and NFPA 90A requirements; air erosion and mold growth limits of UL-181; stringent fungal resistance test per ASTM-C1071 and ASTM G21; and shall meet zero level bacteria growth per ASTM G22. **Unit insulation must meet these stringent requirements or unit(s) will not be accepted.**

Standard is 1 inch (25 mm) filter holder with 1inch (25 mm) thick fiberglass throwaway filter.

Option: 2 inch (50 mm) filter holder with 2 inch (50 mm) thick fiberglass throwaway filter.

Pre-Engineered Special: Integrated fresh air intake. Removes the need for field attachment of fresh air assembly. Does not increase the cabinet footprint. Available with cabinet side connection only.

Cabinet arrangements shall allow placement of riser piping on any one of the three sides of the cabinet not used for the chassis access and air supply. All cabinets shall have supply air knockouts on all sides and top. Return air K.O. to be removed from panel behind the filter. Field shall configure cabinets by removing factory knockouts and install duct flanges per model configuration shown on plans. For air noise attenuation purposes, the discharge air from fan shall discharge into insulated plenum that also contains x-shape painted air baffle. Units not having supply air noise baffles are not acceptable. Cabinet design shall allow a full height base board (4.50 inches/114 mm) beneath the return air "G" panel. The cabinet shall contain an easily removable motor/blower assembly.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service
Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely
ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014

Option: Factory to configure supply air openings, remove K.O., cut insulation, and install duct angles. With dust protection, includes capping supply air openings and leaving K.O. in panel behind filter (installer to remove both).

Electrical conduit shall be installed from electrical unit control compartment to top of cabinet for low voltage control wiring as well as separate conduit for main power wiring. **Units without these two factory installed electric conduits will not be accepted.**

Option: Leader and follower cabinets.

Option: Required installation vibration isolation pad to be applied at the factory to the bottom of the cabinet if not field provided.

Option: Cabinet height 80" or 88" (203 or 223 cm)

Pre-Engineered Special: Extended cabinet heights

Option: Construction for unit mounted Thermostat (thermostat ordered separate) -- includes junction box mounted outside discharge plenum and has a Molex-type connector inside for quick connection to A91558 Series thermostat. The A91558 series use thermostat models ATA11U01, ATA11U03, ATA22U01, ATP21W02, ATP21W02, ATP21W02, ATP32U03C, ATC32U02C, ATA32V01, AVB32V02C, AVB32V03C respectively with mating molex-type connector.

Pre-Engineered Special: Custom thermostat whips for connection to 3rd party provided thermostats.

Option: Low voltage 15, 25, or 35 foot (572, 762, or 1,067 cm) wire harness (whip) with molex-type connector for connection to remote mounted thermostat. For use with A91558 thermostat series (see above).

Pre-Engineered Special: Extended thermostat whips for remote thermostat location in excesses of the 35' from the cabinet.

Option: Cabinet to have wire harness for connection to A91558 series thermostat mounted to ADA "G" return air panel.

Option: Premium automotive grade rubber seal between cabinet inner panel and chassis.

Full-length supply, return, and insulated condensate water risers shall be type M copper. Riser length up to 120 inch (305 cm) is standard. Supply and return risers have integral internal piping including ball valves (for shut off purposes at unit). Risers and piping shall be factory pressure tested to check for leaks. Field installed hose kits are required to connect the chassis piping to the cabinet ball valve. The condensate riser shall be insulated with 3/8-inch (9.5 mm) Armaflex type insulation. The top of each riser shall be deeply swaged (3 inch/76.2 mm) to accept connection to the riser above/below, allowing for a floor to floor dimensional variance of ± one inch (25.4 mm). Units not having swaged riser-piping connections shall not be acceptable. Couplings and trim pieces shall not be allowed.

Option: Bulk ship risers so complete riser stack can be installed, pressure tested, and filled before the cabinets are installed.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service	
Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely	
ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014	

Pre-Engineered Special: Risers/Cabinets/Chassis shipped by floor. This helps with job site delivery coordination.

Option: Type L riser piping.

Option: Supply and return risers insulated with 3/8-inch (9.5 mm) ARMAFLEX (closed cell) type insulation.

1 inch through 3-inch diameter standard, 4-inch diameter available.

Option: Non-swaged riser piping for crimp (non-brazed) style connections.

Pre-Engineered Special: Risers for single pipe applications. Supply and return water lines are combined into one riser configuration.

Pre-Engineered Special: Riser connection location moved lower. Standard riser connections are made above the cabinets. This requires the use of a ladder or scaffolding to get access to the connection. Riser connection locations are moved lower so that connections can be made at the ground level. Risers must be shipped separately.

Pre-Engineered Special: Riser manual air vents. Allow for air to be purged from the riser stack during commissioning.

Pre-Engineered Special: Extended risers. Removes the need for riser extension pieces which results in less field connections.

Pre-Engineered Special: Remove drain riser. This is needed when condensate drain risers are field provided.

Pre-Engineered Special: Riser bypass valve. Allows water flow from supply to return riser during pressurization prior to the chassis being installed.

Fan and Motor Assembly:

The cabinet shall contain a removable motor/blower assembly. Units shall have a direct drive centrifugal fan. The fan motor shall be 3 speed, permanently lubricated, PSC type with thermal overload protection. The fan motor for small size units (09 and 12) shall be isolated from the fan housing by a torsionally flexible motor mounting system with rubber type grommets to inhibit vibration induced high noise levels associated with "hard wire belly band" motor mounting. The fan motor on medium and large units (15-36) shall be isolated with flexible rubber type isolation grommets only. Airflow/External static pressure rating of the unit shall be based on a wet coil and clean filter. Ratings based on a dry coil and/or no air filter shall not be acceptable.

Option: ECM Constant Volume (CV) variable speed ball bearing type motor. The ECM-CV fan motor shall provide soft starting, maintain constant CFM over its static operating range and provide airflow adjustment in 25 CFM increments via its control board. The fan motor shall be isolated from housing by rubber grommets. The motor shall be permanently lubricated and have thermal overload protection. A special dehumidification mode shall be provided to allow lower airflows in cooling for better dehumidification. The dehumidification mode may be constant or automatic (humidistat controlled).

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1.405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest eversion of this document is available at climateMaster.com. © ClimateMaster in.c. All rights reserved 2014.

Option: ECM Constant Torque (CT). The fan motor shall be isolated from housing by rubber grommets.

The motor shall be permanently lubricated and have thermal overload protection.

Chassis:

The chassis, which incorporates the air coil, water coil, drain pan with solid-state electronic condensate overflow protection, compressor, and electrical components shall be easily installed for quick jobsite installation and future servicing purposes. The slide in chassis shall have insulated panels surrounding the compressor. Compressors are not in the air stream. The chassis base shall be fabricated from heavy gauge galvanized steel formed to match the slide in rails of the cabinet. Units shall have a factory installed 1 inch (25.4 mm) thick filter bracket and throwaway type glass fiber filter. Furnish one spare set of filters.

Option: Chassis can ship upright in any cabinet that risers are not attached.

Option: UltraQuiet package shall consist of the standard double isolation of the compressor plus sound attenuating compressor blanket applied to the compressor. All sheet metal surrounding the compressor shall have high density sound attenuating material with STC rating of 26 per ASTM E-90 and then covered with fiberglass insulation.

Option: Factory wired for communicating thermostat, requires ATC32U02 thermostat.

Option: Rib relay replaces contactor for models 09 through 18. Eliminates contactor "click" when first energized.

Option: vFLow®The unit will be supplied with internally factory mounted modulating water valve with delta T control. The factory built-in valve shall modulate water flow through unit based on a field adjustable water temperature difference between the entering and leaving water. The valve shall automatically adjust for operating mode, source water temperature and variations in external head pressure. The valve will also act as a shut-off valve to prevent water flow through the unit when the unit is not activated and will have a minimum position capability.

Option: Factory installed 3-way water valve. Valves are used on units at the end of a riser water loop to ensure continuous flow between supply and return riser stacks when those units are not in operation. This prevents excessive water flow and pressure drop through the coax when it is not in operation.

Pre-Engineered Special: Internally factory mounted water loop strainer. Strainers filter water to ensure debris does not enter the unit coaxial heat exchanger. Debris in water loops can degrade thermal transfer (efficiency) and potentially limit water flow. Please consult TSL IOM for proper care and maintenance of strainers when selecting this option.

Pre-Engineered Special: Supply and Return P/T ports. Allows the for the water pressure drop to be checked across the heat exchanger which can be correlated to a fluid flow rate. Technicians can use this feature to determine if there is proper water flow through the unit.

Option: The unit will be supplied with internally factory mounted two-way motorized water valve (MWV) for variable speed loop pumping requirements. Valve to be fail closed type. Water circuit will have factory installed high pressure switch located between MWV and heat exchanger.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service
Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely
ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014

Option: The unit will be supplied with internally factory mounted automatic water flow regulators.

Option: The unit will be supplied with internally factory mounted secondary pump rated for 200 PSIG. applications.

Water connections between chassis and the cabinet shall be accomplished via a hose kit consisting of Kevlar-reinforced EPDM core hose surrounded by a stainless-steel braid. Hose kit shall have brass fittings with stainless-steel ferrules. AHH hose ends shall be solid External MPT which connects to mating fitting on cabinet shut off ball valve(s), and Internal NPSM (National Pipe Straight Mechanical) swivel end with fiber or EPDM washer which connects to mating threaded end connection on chassis. AHU hose ends shall be Internal NPSM (National Pipe Straight Mechanical) swivel end with fiber or EPDM washer which connects to mating threaded end connection on chassis. The hose kit shall be rated for 400 psi (2,756 kPa) design working pressure.

Refrigerant Circuit:

All units shall contain an EarthPure® (HFC-410A) sealed refrigerant circuit including a high efficiency scroll or rotary compressor designed for heat pump operation, a thermostatic expansion valve for refrigerant metering, an enhanced corrugated aluminium lanced fin and rifled copper tube refrigerant to air heat exchanger, reversing valve, coaxial (tube in tube) refrigerant to water heat exchanger, and safety controls including a high pressure switch, low pressure switch (loss of charge), water coil low temperature sensor, and air coil low temperature sensor. Access fittings shall be factory installed on high- and low- pressure refrigerant lines to facilitate field service. Activation of any safety device shall prevent compressor operation via a microprocessor lockout circuit. The lockout circuit shall be reset at the thermostat or at the contractor supplied disconnect switch. **Units that cannot be reset at the thermostat shall not be acceptable.**

Hermetic compressors shall be internally sprung and externally isolated. The compressor shall have a dual level vibration isolation system. The compressor will be mounted on specially engineered sound-tested EPDM vibration isolation grommets to a large heavy gauge compressor base pan, which is then isolated from the cabinet by resting on condensate drain pan which is isolated by grommets for maximized vibration attenuation. All units (except units with rotary compressors) shall include a discharge muffler to further enhance sound attenuation. Compressor shall have thermal overload protection.

Refrigerant to air heat exchangers shall utilize enhanced corrugated lanced aluminium fins and rifled copper tube construction rated to withstand 625 PSIG (4309 kPa) refrigerant working pressure. Copper hairpins are tin electroplated for added protection from formicary corrosion. **Units that do not have tin-plated hairpins shall not be acceptable.**

Refrigerant to water heat exchangers shall be of copper inner water tube and steel refrigerant outer tube design, rated to withstand 625 PSIG (4,309 kPa) working refrigerant pressure and 500 PSIG (3,445 kPa) working water pressure. The refrigerant to water heat exchanger shall be "electro-coated" with a low cure cathodic epoxy material a minimum of 0.4 mils thick (0.4 – 1.5 mils range) on all surfaces. The black colored coating shall provide a minimum of 1,000 hours salt spray protection per ASTM B117-97 on all external steel and copper tubing. The material shall be formulated without the inclusion of any heavy metals and shall exhibit a pencil hardness of 2H (ASTM D3363-92A), crosshatch adhesion of 4B-5B (ASTM D3359-95), and impact resistance of 160 in-lbs (184 kg-cm) direct (ASTM D2794-93).

Refrigerant metering shall be accomplished by thermostatic expansion valve only. Expansion valves shall be dual port balanced types with external equalizer for optimum refrigerant metering. Units shall be designed and tested for operating ranges of entering water temperatures from 20° to 120°F (-6.7° to 48.9°C). Reversing valve shall be four-way solenoid activated refrigerant valve, which shall default to heating mode should the solenoid fail to function. If the reversing valve solenoid defaults to cooling mode, an additional low temperature thermostat must be provided to prevent over-cooling an already cold room.

imateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service
epartment at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely
imateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014

Option: The unit will be supplied with non-plated air to refrigerant heat exchanger.

Option: The unit will be supplied with cupro-nickel coaxial water to refrigerant heat exchanger.

Cabinet Drain Pan:

The drain pan shall be constructed of galvanized steel and have a powder coat paint application to further inhibit corrosion. This corrosion protection system shall meet the stringent 1,000-hour salt spray test per ASTM B117. Drain pan to be isolated from cabinet with four EPDM vibration isolation grommets. If plastic type material is used, it must be HDPE (High Density Polyethylene) to avoid thermal cycling shock stress failure over the lifetime of the unit. Drain pan shall be fully insulated. Drain pan shall have at a minimum a doubled sloped surface to allow positive drainage to the outlet opening, which shall be at the lowest level of the entire pan surface. Drain outlet shall be connected from pan outlet to condensate riser (if supplied) with factory installed trap inside of cabinet. The cabinet drain pan as standard will be supplied with solid-state electronic condensate overflow protection. Drain pans that are not isolated from cabinet shall not be acceptable. Mechanical float switches will NOT be accepted.

Option: Stainless steel drain pan

Electrical:

A control compartment shall be located within the chassis and shall contain a 50VA transformer, 24 volts activated, 2 pole compressor contactor, relay and solid-state controller for complete unit operation. Reversing valve and fan motor wiring shall be routed through this electronic controller. Units shall be name-plated for use with time delay fuses or HACR circuit breakers. Unit controls shall be 24 Volt and provide heating or cooling as required by the remote thermostat/sensor. A control compartment shall be located within the cabinet and shall contain a terminal block for high voltage connections. All electrical connections between the chassis and cabinet shall be made via locking quick-connects.

Option: Disconnect Switch, Non-Fused, classified as motor disconnect.

Option: Circuit Breaker, all 208/230 volt and 265 volt, 15 and 20 amp - HACR rated, 265-volt 25 amp and higher - supplemental rated.

Solid State Control System (CXM):

Units shall have a solid-state control system. Units utilizing electro-mechanical control shall not be acceptable. The control system microprocessor board shall be specifically designed to protect against building electrical system noise contamination, EMI, and RFI interference. The control system shall interface with a heat pump type thermostat. The control system shall have the following features:

- a. Anti-short cycle time delay on compressor operation.
- b. Random start on power up mode.
- c. Low voltage protection.
- d. High voltage protection.
- e. Unit shutdown on high or low refrigerant pressures.
- f. Unit shutdown on low water temperature.
- g. Condensate overflow electronic protection.
- h. Option to reset unit at thermostat or disconnect.
- i. Automatic intelligent reset. Unit shall automatically reset the unit 5 minutes after trip if the fault has cleared. If a fault occurs 3 times sequentially without thermostat meeting temperature, then lockout requiring manual reset will occur.
- j. Ability to defeat time delays for servicing.
- k. Light emitting diode (LED) on circuit board to indicate high pressure, low pressure, low voltage, high voltage, low water/air temperature cut-out, condensate overflow, and control voltage status.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at **climatemaster.com**. © ClimateMaster, Inc. All rights reserved 2014

- I. The low-pressure switch shall not be monitored for the first 120 seconds after a compressor start command to prevent nuisance safety trips.
- m. 24V output to cycle a motorized water valve or other device when compressor relay is active.
- n. Unit Performance Sentinel (UPS). The UPS warns when the heat pump is running inefficiently.
- o. Water coil low temperature sensing (selectable for water or antifreeze).
- p. Air coil low temperature sensing.

Units not providing the 8 safety protections of anti-short cycle, low voltage, high voltage, high refrigerant pressure, low pressure (loss of charge), air coil low temperature cut-out, water coil low temperature cut-out, leaving water high pressure switch, and condensate overflow protection for both drain pans will not be accepted.

Option: Enhanced Solid-State Control System (DXM2)

This control system is a communicating controller, also features two-stage control of cooling and two-stage control of heating modes for exacting temperature and dehumidification purposes.

This control system coupled with a multi-stage thermostat will better dehumidify room air by automatically running the heat pump's fan at lower speed on the first stage of cooling thereby implementing low sensible heat ratio cooling. On the need for higher cooling performance the system will activate the second stage of cooling and automatically switch the fan to the higher fan speed setting. This system may be further enhanced with a humidistat. Units not having automatic low sensible heat ratio cooling will not be accepted; as an alternate a hot gas reheat coil may be provided with control system for automatic activation.

This controller shall have sensors to monitor entering water, leaving water, supply air, and compressor discharge line temperatures. Temperatures can be read by using service tool or communicating thermostat.

Control shall have all the above-mentioned features of the CXM control system along with the following expanded features:

- a. Removable thermostat connector.
- b. Night setback control.
- c. Random start on return from night setback.
- d. Minimized reversing valve operation (Unit control logic shall only switch the reversing valve when cooling is demanded for the first time. The reversing valve shall be held in this position until the first call for heating, ensuring quiet operation and increased valve life.).
- e. Override temperature control with 2-hour timer for room occupant to override setback temperature at the thermostat.
- f. Dry contact night setback output for digital night setback thermostats.
- g. Ability to work with heat pump or heat/cool (Y, W) type thermostats.
- h. Ability to work with heat pump thermostats using O or B reversing valve control.
- i. Emergency shutdown contacts.
- j. Boiler less system heat control at low loop water temperature.
- k. Ability to allow up to 3 units to be controlled by one thermostat.
- I. Relay to operate an external damper.
- m. Ability to automatically change fan speed from multi-stage thermostat.
- n. Relay to start system pump.
- o. 75 VA control transformer. Control transformer shall have load side short circuit and overload protection via a built-in circuit breaker.

Units not providing the 8 safety protections of anti-short cycle, low voltage, high voltage, high refrigerant pressure, low pressure (loss of charge), air coil low temperature cut-out, water coil low temperature cut-out, and condensate overflow protection for both drain pans will not be accepted.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1.405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climateMaster.com. © ClimateMaster, the caserved 2014.

When DXM2 is connected to either ACDU service tool or ATC32U thermostat the installer/service technician can; check and set CFM; check dip switch S1, S2, and S3 settings; run operation modes manually; check all physical inputs from thermostat and refrigerant pressure switches status, (Y1, Y2, W, O, G, H, ESD, NSB, OR, HP switch, and LOC switch); current or at time of fault the following temperatures -LT1, LT2, compressor discharge, leaving air, leaving water, entering water and control voltage; record last five faults, list possible reasons, and clear faults.

Digital Night Setback with Pump Restart (DXM2 w/ ATP32U03C/04C, ATC32U03C):

The unit will be provided with a Digital Night Setback feature using an accessory relay on the DXM2 controller with an ATP32U03/04 thermostat and an external, field-provided time clock. The external time clock will initiate and terminate the night setback period. The thermostat will have a night setback override feature with a programmable override time period.

An additional accessory relay on the unit DXM2 controller will energize the building loop pump control for the duration of the override period. (Note: This feature requires additional low voltage wiring. Consult Application Drawings for details.)

Remote Service Sentinel (CXM/DXM2):

Solid state control system shall communicate with thermostat to display (at the thermostat) the unit status, fault status, and specific fault condition, as well as retrieve previously stored fault that caused unit shutdown. The Remote Service Sentinel allows building maintenance personnel or service personnel to diagnose unit from the wall thermostat. The control board shall provide a signal to the thermostat fault light, indicating a lockout. Upon cycling the G (fan) input 3 times within a 60 second time period, the fault light shall display the specific code as indicated by a sequence of flashes. A detailed flashing code shall be provided at the thermostat LED to display unit status and specific fault status such as over/under voltage fault, high pressure fault, low pressure fault, low water temperature fault, condensate overflow fault, etc. **Units that do not provide this remote service sentinel shall not be acceptable.**

Option: MPC (Multiple Protocol Control) Interface System

Units shall have all the features listed above (either CXM or DXM2) and the control board will be supplied with a Multiple Protocol interface board. Available protocols are BACnet MS/TP, Modbus, or Johnson Controls N2. The choice of protocol shall be field selectable/changeable via the use of a simple selector switch. Protocol selection shall not require any additional programming or special external hardware or software tools. This will permit all units to be daisy chain connected by a 2-wire twisted pair shielded cable. The following points must be available at a central or remote computer location:

- a. Space temperature
- b. Leaving water temperature
- c. Discharge air temperature
- d. Command of space temperature setpoint
- e. Cooling status
- f. Heating status
- g. Low temperature sensor alarm
- h. Low pressure sensor alarm
- i. High pressure switch alarm
- j. Condensate overflow alarm
- k. Hi/low voltage alarm
- I. Fan "ON/AUTO" position of space thermostat as specified above
- m. Unoccupied/occupied command
- n. Cooling command
- o. Heating command
- p. Fan "ON/AUTO" command
- g. Fault reset command

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service	
Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely	
ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014	

r. Itemized fault code revealing reason for specific shutdown fault (any one of 7)

This option also provides the upgraded 75 VA control transformer with load side short circuit and overload protection via a built-in circuit breaker.

Return Panels:

The "G" return AR panel assembly shall be architecturally designed, acoustic type, with one-piece frame and hinged door for easy and quick access to filter. Assembly is attached to the cabinet with 4 bolts which can be easily removed for chassis access. The hinged return panel shall be made of heavy gauge die formed galvanized steel with a powder coat finish in "Polar Ice" or special color. Return air panels that protrude from wall more than 5/8 inch (15.9 mm) are not acceptable.

Option: Return air panel painted "Bright White" color

Pre-Engineered Special: Custom painting of return air panels per field specified color.

Option: "G" panel with mounting for ADA thermostat allows thermostat to be mounted low to comply with ADA height requirement.

Pre-Engineered Special: Custom return air panel knock outs for ADA mounted 3rd party provided thermostats.

Pre-Engineered Special: ADA return air panels with knock out moved lower. Needed when cabinets are placed on unit stands to comply with ADA maximum thermostat height.

Option: "G" panel with keyed locks - prevents users from tampering with units.

Option: Style "G" return air panel with frame for recessing cabinet behind finished wall.

Option: Motorized fresh air damper for "G" panel with frame - allows outside air to enter on right or left side.

Option: Flush Mounted "L" panel. Offered in Bright White and Polar Ice color option. Allows for chassis to be removed without removing the frame.

Supply Grille(s):

Supply grille(s) shall be architecturally designed "brushed" aluminium or powder coated finish in "Polar Ice" color.

Option: Supply grille painted "Bright White".

Option: Supply grille with double deflection style louvers.

Option: Supply grille with double deflection style louvers with opposed damper.

Warranty:

ClimateMaster shall warranty equipment for a period of 12 months from start up or 18 months from shipping (which ever occurs first).

Option: Extended 4-year compressor warranty covers compressor for a total of 5 years.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information containmed herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014

Option: Extended 4-year refrigeration circuit warranty covers coils, reversing valve, expansion valve and compressor for a total of 5 years.

Option: Extended 4-year control board warranty covers the CXM/DXM2 control board for a total of 5 years.

FIELD INSTALLED OPTIONS

Hose Kits - (required for field water connections):

Water connections between chassis and the cabinet shall be accomplished via a hose kit consisting of Kevlar-reinforced EPDM core hose surrounded by a stainless-steel braid. Hose kit shall have brass fittings with stainless-steel ferrules. The hose kit shall be rated for 400 psi (2,756 kPa) design working pressure. This hose kit accessory is required for each cabinet, AHH for union cap valve and AHU for sweat valve.

Cabinet Stands - ACST Series:

Cabinet stands are used when applications have baseboards with heights taller than 4 inches. Heavy 16-gauge galvanized steel construction, bolts to bottom of cabinet. Heights 1-inch (25 mm) to 13-inch (330 mm) by 1inch (25 mm) increments. Ships in bulk for field attachment.

Pre-Engineered Special: Cabinet stands factory assembled and attached to the cabinet.

Filters

Pleated media disposable 1 inch (25 mm) thick MERV 8 or MERV 11, 2 inches (50 mm) thick MERV 8, MERV 11 or MERV 13.

Thermostats:

The thermostat shall be a ClimateMaster electronic type thermostat as selected below with the described features:

Note: To achieve full benefit of controls, use 2 speed thermostats (switch for manual or Y2 for automatic change).

- a. Multi-stage Digital Automatic or Manual Changeover Programmable Communicating (ATC32U02C).

 Thermostat shall be electronic communicating LCD 7 Day Programmable (with up to 4 setpoints per day), thermostat shall be provided. The thermostat shall offer three stages of heating and two stages of cooling with precise temperature control and have a four-wire connection to the unit. The thermostat shall be capable of manual or automatic change-over operation and shall operate in standard or programmable mode. An integrated humidity control feature shall be included to control a humidifier and/or a dehumidifier. The thermostat shall include a utility demand reduction feature to be initiated by an independent time program or an external input. The thermostat shall have a comprehensive installation setup menu to include configuration of the unit CFM for each mode of operation (ECM motor option required). The thermostat shall display system faults with probable cause and troubleshooting guidance. Comprehensive service diagnostics menus shall display, system inputs, system outputs, configuration settings, Geo source inlet and outlet temperatures, compressor discharge line temperature, liquid line temperature, leaving air temperature. The thermostat shall allow for immediate manual control of all DXM2 outputs at the thermostat for rapid troubleshooting.
- b. Single-Stage Digital Auto or Manual Changeover (ATA11U01)
 Thermostat shall be a single-stage, digital, auto or manual changeover with HEAT-OFF-COOL-AUTO system switch and fan ON-AUTO switch. Thermostat shall have an LCD display with temperature and setpoint(s) in °F or °C. The Thermostat shall provide permanent memory of setpoint(s) without batteries. A fault LED shall be provided to display specific fault condition. Thermostat shall provide temperature display offset for custom applications.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climateMaster.com. © ClimateMaster, Inc. All rights reserved 2014.

c. Single Stage Digital Auto or Manual Changeover and Manual Two Fan Speed Selections (ATA11U03)

Thermostat shall be a single-stage, digital, auto or manual changeover with HEAT-OFF-COOL-AUTO system settings, high and low fan settings and fan ON-AUTO settings. Thermostat shall have an LCD display with temperature, setpoint(s), mode, and status indication. The temperature indication shall be selectable for °F or °C. The thermostat shall provide permanent memory of setpoint(s) without batteries. Thermostat shall provide heating setpoint range limit, cooling setpoint range limit, temperature display offset, keypad lockout, dead-band range setting, and inter-stage differential settings. Thermostat shall allow the use of an accessory remote temperature sensor (17B0008N05). Thermostat navigation shall be accomplished via 4 push buttons.

d. Multi-stage Digital Automatic Changeover (ATA22U01)

Thermostat shall be multi-stage (2H/2C), manual or automatic changeover with HEAT-OFF-COOL-AUTO-EM HEAT system settings and fan ON-AUTO settings. Thermostat shall have an LCD display with temperature, setpoint(s), mode, and status indication. The temperature indication shall be selectable for °F or °C. The thermostat shall provide permanent memory of setpoint(s) without batteries. A fault LED shall be provided to indicate specific fault condition(s). Thermostat shall provide temperature display offset for custom applications. Thermostat shall allow unit to provide better dehumidification with optional DXM2 controller by automatically using lower fan speed on stage 1 cooling (higher latent cooling) as main cooling mode, and automatically shifting to high-speed fan on stage 2 cooling. Thermostat can be configured to heat and cool even if in off mode (replaces night low limit switch (NLLS) in cabinet).

e. <u>Multi-stage Manual Changeover Programmable 5/2 Day (ATP21W02)</u>

Thermostat shall be 5 day/2 day programmable (with up to 4 setpoints per day), multi-stage (2H/1C), manual or automatic changeover with HEAT-OFF-COOL-EM HEAT system settings and fan ON-AUTO settings. Thermostat shall have an LCD display with temperature, setpoint(s), mode, and status indication. The temperature indication shall be selectable for °F or °C.

f. Multi-stage Automatic or Manual Changeover Programmable 7 Day (ATP32U03C)

Thermostat shall be 7 day programmable (with up to 4 setpoints per day), multi-stage (3H/2C), automatic or manual changeover with HEAT-OFF-COOL-AUTO-EM HEAT system settings and fan ON-AUTO settings. Thermostat shall have a blue backlit dot matrix LCD display with temperature, setpoints, mode, and status indication. The temperature indication shall be selectable for °F or °C. Time display shall be selectable for 12 or 24-hour clock. Fault identification shall be provided (when used with ClimateMaster CXM or DXM2 controls) to simplify troubleshooting by providing specific unit fault at the thermostat with red backlit LCD during unit lockout. The thermostat shall provide permanent memory of setpoints without batteries. Thermostat shall provide heating setpoint range limit, cooling setpoint range limit, temperature display offset, keypad lockout, dead-band range setting, and inter-stage differential settings. Thermostat shall provide progressive recovery to anticipate time required to bring space temperature to the next programmed event. Thermostat shall provide an installer setup for configuring options and for setup of servicing contractor name and contact information. Thermostat shall allow the use of an accessory remote and/or outdoor temperature sensor (AST008C). Thermostat navigation shall be accomplished via five buttons (up/down/right/left/select) with menu-driven selections for ease of use and programming.

g. CM100 - Multi-stage Automatic or Manual Changeover digital thermostat (ATA32V01)

Multi-stage (3H/2C), automatic or manual changeover with HEAT-OFF-COOL-AUTO-EM HEAT system settings and fan ONAUTO settings. Thermostat shall have a green backlit LED display with temperature, setpoints, mode, and status indication via a green (cooling) or red(heating) LED. The temperature indication shall be selectable for °F or °C. Time display shall be selectable for 12- or 24- hour clock. The thermostat shall provide permanent memory of setpoints without batteries. Thermostat shall provide heating setpoint range limit, cooling setpoint range limit, temperature display offset, keypad lockout, dead-band range setting, and interstage differential settings. Thermostat shall provide progressive recovery to anticipate time required to bring space temperature to the next programmed event. Thermostat shall provide an installer setup for configuring. Thermostat navigation shall be accomplished via four buttons (Mode/fan/down/up) with menu-driven selections for ease of use and programming.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service	
Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely	
ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014	

- h. CM300 Multi-stage, Automatic or Manual Changeover, 7-day Programmable with Wi-Fi and Humidity Control (AVB32V02C). Residential version shall be 7 day programmable with up to 4 setpoints per day. Commercial version shall be 7 day programmable with 4 occupied/unoccupied periods per day with up to 4-hour override. Multi-stage (3H/2C), automatic or manual changeover with HEAT-OFF-COOL-AUTO-EM HEAT system settings and fan ON-AUTO settings, Wi-Fi, pre-occupancy purge fan option, night time control of display backlight, bi-color LED indicates a heating or cooling demand, keypad lock, title 24 compliant, openADR2.0b certified with Skyport web portal. Compatible with condensate overflow warning systems lockout compressor with message on.
- i. <u>CM500 Color Touchscreen Display, Multi-stage, Automatic or Manual Changeover, 7-day Programmable with Wi-Fi and Humidity Control (AVB32V03C)</u>

Thermostat shall have color resistive touchscreen display with space temperature, relative humidity, setpoints, mode, status indication and local weather (if connected to Wi-Fi). Residential version shall be 7 day programmable with up to 4 setpoints per day. Commercial version shall be 7 day programmable with 4 occupied/unoccupied periods per day with up to 4-hour override. Multi-stage (3H/2C), automatic or manual changeover with HEAT-OFF-COOL-AUTO-EM HEAT system settings and fan ONAUTO settings, Wi-Fi, pre-occupancy purge fan option, customizable screen saver and background displays, indicator on display indicates a heating or cooling demand, set-point lock, title 24 compliant, openADR2.0b certified with Skyport web portal. Compatible with condensate overflow warning systems – lockout compressor with message on the display. Capable of being monitored by 3rd party software. Compatible with AST014 Wi-Fi remote sensor. Configurator mobile app or web portal for easy setup. Separate dehumidification and humidification setpoints shall be configurable for discreet outputs to a dehumidification option and/or an external humidifier. The temperature indication shall be selectable for °F or °C. Time display shall be selectable for 12- or 24-hour clock. The thermostat shall provide permanent memory of setpoints without batteries. Thermostat shall provide heating setpoint range limit, cooling setpoint range limit, temperature display offset, dead-band range setting, and inter-stage differential settings. Thermostat shall provide progressive recovery to anticipate time required to bring space temperature to the next programmed event. Thermostat shall provide access to a web portal and mobile app for installer setup for configuring options. Thermostat shall have menu-driven selections for ease of use and programming.

DDC Sensors:

ClimateMaster wall mounted DDC sensor to monitor room temperature and interfaces with optional DDC interface system described above. Several types as described below:

- a. Sensor only with no display (MPC).
- b. Sensor with setpoint adjustment and override (MPC).
- c. Sensor with setpoint adjustment and override, LCD display, status/fault indication (MPC).

NOTICE! This product specification document is furnished as a means to copy and paste ClimateMaster product information into project specification. It is not intended to be a complete list of product requirements. This document is an excerpt from the product submittal and must not be used without consulting the complete product submittal. For complete product installation and application requirements, please consult the complete product submittal. ClimateMaster is not responsible for misuse of this document or a failure to adequately review specific requirements in the product submittal.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service	
Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely	
ClimateMaster's opinion or commendation of its products. The latest version of this document is available at climatemaster.com. © ClimateMaster, Inc. All rights reserved 2014	

Pre-Engineered Factory Design Specials

In a fast pace ever changing market
ClimateMaster is committed to working
with our partners to bring solutions to
their project challenges and we do this in many
ways. We design our products to be extremely configurable,
offer the widest range of product options, continually
introduce new options, and support special design
modification requests. When unique solutions are needed to
support your project specific needs, ClimateMaster is here
to be your partner!

In our years of experience we have supported many different requests. Below is a list commonly requested (preengineered) factory design specials we support:

- Cabinets stands factory assembled and attached to the cabinet – Saves labor and time in the field
- Extended height cabinets Reduced ducting material; Supply air is discharged at a higher elevation (lengths limited)
- Integrated fresh air intake Conditioned outside air can be ducted directly to the cabinet without the need for a field accessory and without extending the cabinets footprint
- **Single pipe risers** Supply and return riser combined into one riser for single pipe applications
- Riser to riser connection points moved lower Allows for brazing connection to be made without the use of a ladder or scaffolding
- Supply and Return P/T ports Allows for water pressure drop to be checked across the heat exchanger which can be correlated to a fluid flow rate
- Riser manual air vents Allow air to be purged from the system at the top of a riser stack

- **Extended riser lengths** Removes the needed for extension pieces (lengths limited)
- Remove drain riser When drain risers are field provided
- Riser bypass valve Allows water flow from supply to return riser during pressurization prior to the chassis being installed
- 4" Risers Applications that need large amounts of water flow
- Risers/Cabinets/Chassis shipped by floor Helps with job site delivery coordination
- Extended thermostat whips Same labor/time saving solution but needed when remote thermostats are located more than 35' away
- Custom thermostat whips Used for connection to 3rd party provided thermostats
- ADA return air panels with custom knocks outs Needed with 3rd party provided thermostats are mounted to our return air doors
- Customer return air panel colors Supports Architect/ Designer/Owner requests
- Strainers Collect debris in the water loop stopping it from entering the water heat exchanger

These are just a few of the product modifications we have supported for applications specific needs. To inquire about any of these preconfigured special options or any other solutions you need support with on your vertical high-rise project please contact your local ClimateMaster Representative: https://www.climatemaster.com/commercial/header-links/rep-locator.

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products. The latest eversion of this document is available at climateMaster.com. © ClimateMaster, reserved 2014.

Performance Sheet

SUBMITTAL DATA - S-I UNITS	SUBMITTAL DATA - S-I UNITS		
Unit Designation:			
Job Name:			
Architect:			
Engineer:			
Contractor:			
PERFORMANCE DATA			
Cooling Capacity:	kW		
EER:			
Heating Capacity:	kW		
COP:			
Ambient Air Temp:	°C		
Entering Water Temp (Clg):	°C		
Entering Air Temp (Clg):	°C		
Entering Water Temp (Htg):	°C		
Entering Air Temp (Htg):	°C		
Airflow:	l/s		
Fan Speed or Motor/RPM/Turns:			
Operating Weight:	(kg)		
ELECTRICAL DATA			
Power Supply:	Volts		
Phase	Hz		
Minimum Circuit Ampacity:			
Maximum Overcurrent Protection:			

Unit Designation:	
Job Name:	
Architect:	
Engineer:	
Contractor:	
PERFORMANCE DATA	
Cooling Capacity:	Btuh
EER:	
Heating Capacity:	Btuh
COP:	
Ambient Air Temp:	°F
Entering Water Temp (Clg):	°F
Entering Air Temp (Clg):	°F
Entering Water Temp (Htg):	°F
Entering Air Temp (Htg):	°F
Airflow:	CFM
Fan Speed or Motor/RPM/Turns:	
Operating Weight:	(lb)
ELECTRICAL DATA	
Power Supply:	Volts
Phase	Hz
Minimum Circuit Ampacity:	
Maximum Overcurrent Protection:	

Revision History

Date:	Item:	Action:
03/24/22	Pages 65	Added additional cabinet dimensions
09/28/21	All	Removed LON Controls
09/07/21	Pages 57, 58 and 71	Added RA filter dimensions to physical data tables and updated AVHS "G" panel dimensions
08/26/21	Page 19, 71	Introduced ADA Type 1/Type 2 Thermostat Mounting Table in the AVHS "G" Panel Decoder
01/18/21	Page 20	Added Riser Decoder
01/08/21	Pages Added	Updated Physical Data, added Hybrid Physical Data and Supply Air Opening and Grilles pages, changed measurements on Hose Kits and Stands page
11/3/20	Page 84	Updated Engineering Specs
09/25/20	All	Updated document verbiage/layout, added Pre-Engineered section, introduced new 3-way water valve, risers attached with horizontal shipping, DDC chassis controls, thermostat options, new decoder format, and shipping tables
05/14/19	Pages 10,60,61,67	Misc. updates
01/11/19	Introduced Hybrid and E cabinet options	Added
09/26/18	All	updated heating LAT.
09/26/18	All	Reduced footprint of sizes 09-12. Introduced CT ECM w/CSM controls and added Flush Mounted Return Air Panel.
09/1/17	All	Updated decoder and DMX wiring diagrams
08/18/17	All	Updated information to new decoders
07/7/17	Cabinet and chassis decoders, 200 PSI pump, and modulating water valve, normally open MWV, and configuring cabinet.	Updated
05/08/17	Hose Kit Decoder and sweat valve	Updated
11/15/16	Document Design Update	Updated
04/19/16	Page 33	Updated
03/8/16	Page 62	Edit Engineering Specs
10/08/15	Performance Data - Page 12	Updated
09/01/15	Removed Electric Heat and vFlow Options	Updated
06/24/15	All	Updated
06/03/15	Engineering Specifications	Updated
1/14/15	All	Added vFlow, A Panel, ATP21W02, and Miscellaneous changes
12/16/14	Edits - Page 56	Updated
11/03/14	Misc Edits	Updated
06/30/14	Decoder	Updated
06/05/14	Created	

7300 S.W. 44th Street Oklahoma City, OK 73179 Phone: 405-745-6000 climatemaster.com